Optimization of a Stand-Alone Renewable Energy System for a Small Load Requirement - Springer

http://link.springer.com/chapter/10.1007/978-3-642-37753-2_46

Find out how to access preview-only content

Climate-Smart Technologies Climate Change Management 2013, pp 615-628 Date: 05 Jun 2013

Optimization of a Stand-Alone Renewable Energy System for a Small Load Requirement

Abstract

Optimization of a stand-alone Renewable Energy (RE) system involves selecting the best RE resources and components, and sizing the system accordingly to get the most efficient and cost-effective solution. Design and optimization of an RE power system to serve the lighting in a University of the South Pacific car park was carried out using HOMER software and compared to manual calculations. Resource analysis showed that on average the site received 3.8 kWh m⁻² day⁻¹ of solar energy, with 1,387 full sun hours annually. Monthly average wind speed of 3.88 m s⁻¹ at 10 m above ground level extrapolated to 15 m (the hub height of the wind turbine) resulted in an average wind speed of 4 m s⁻¹, with power density of 70 Wm⁻². With this wind resource, a Whisper 100 wind turbine would be in operation for approximately 50 % of the time in the year. The complementary nature of solar and wind resources showed good potential for a solar-wind hybrid system. In this study three possible systems—a PV system, a wind power system, and a hybrid power system (PV-wind)—were analyzed. It was found that a hybrid system is the best and most cost-effective option, as it is able to provide reliable power whilst minimizing the need for battery storage compared to a single RE power system. The optimum system comprised 0.270 kW_p PV combined with a 900 W Whisper wind turbine with total battery storage capacity of 440 Ah at 12 V. Manual calculations yielded results similar to the HOMER simulations.

Citations

Within this Chapter

- 1. Short Introduction
- 2. Introduction
- 3. Methodology
- 4. Load Characterization and Calculation
- 5. Wind and Solar Resources
- 6. Manual System Sizing
- PV Array Sizing
- 8. Battery Sizing
- 9. Homer
- 10. Results and Discussion
- 11. Resource Assessment
- 12. Monthly Wind Power Output
- 13. PV Array Sizing
- 14. Battery Sizing
- 15. HOMER Simulation and Optimization
- 16. Comparison
- 17. Conclusions
- 18. References
- 19 References

- 18. References
- 19. References

1 of 4 20/10/2014 2:00 PM

Optimization of a Stand-Alone Renewable Energy System for a Small Load Requirement - Springer

http://link.springer.com/chapter/10.1007/978-3-642-37753-2 46

References (15)

- Ball T, Risser V (1988) Stand-alone terrestrial photovoltaic power systems, Tutorial notebook, 20th IEEE Photovoltaic specialists conference, Las Vegas, USA
- Erdnic O, Uzunoglu M (2012) Optimum design of hybrid renewable energy systems: overview of different approaches. Renew Energy Sustain Energy Rev 16:1412–1425 CrossRef
- Fiji Electricity Annual Report (2010) FEA, Fiji. Available at: http://www.fea.com.fj/userfiles /file/ANNUAL%20REPORT%202010%281%29.pdf
- Fortunato B, Mummolo G, Cavallera G (1997) Economic optimization of wind power plant for isolated locations. Sol Energy 60(6):347–358 CrossRef
- Getting Started Guide for HOMER version 2.1 (2005). National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado. Available at: https://analysis.nrel.gov/homer/includes/downloads/HOMERGettingStarted210.pdf
- Ilinka A, McCarthy E, Chaumel JL, Retiveau JL (2003) Wind potential assessment of Quebec Province. Renew Energy 28(12):1881–1897
- 7. Johonson GL (1985) Wind energy systems. Englewood Cliffs, NJ
- 8. Master GM (2004) Renewable and efficient electric power systems. Wiley, New Jersey CrossRef
- 9. Pecen R, Samlim M, Zoa A (2004) A labview based instrumentation system for a wind-solar hybrid power station. J Ind Technol 20(3)
- Prasad S (2009) Solar-wind hybrid system: optimal design for a small load requirement, MSC thesis. The University of the South Pacific, Suva Fiji Islands
- Rehman S, EL-Amin IM, Ahmad F, Shaahid SM, Al-Shehri AM, Bakhashwain J M, Shash A (2007) Feasibility study of hybrid retrofits to an isolated off-grid diesel power plant. Renew Energy Sustain Energy Rev11(4):635–653
- Shaahid SM, Elhadidy MA (2007) Technical and economic assessment of grid-independent hybrid photovoltaic-diesel- battery power systems for commercial loads in desert environmets. Renew Energy Sustain Energy Rev 11:1794

 –1810 CrossRef
- 13. Vega LA (2005) Wind technology primer utility integrated wind turbine generators (WTGs). Report for SOPAC
- 14. Wenham SR, Green MA, Watt ME, Corkish R (2006) Applied photovoltaics, 2nd edn. Centre for Photovoltaic Learning, UNSW
- 15. Zhenchao X, Chaejoo M, Younghak C, Jungmin L, Taegon K (2002) Remote monitoring of wind-photovoltaic hybrid generation system using mobile phone and internet. Available at: https://energy.wesrch.com/User_image/Pdf/6RR_1213152922.pdf

About this Chapter

Title

Optimization of a Stand-Alone Renewable Energy System for a Small Load Requirement

Book Title

Climate-Smart Technologies

Book Subtitle

Integrating Renewable Energy and Energy Efficiency in Mitigation and Adaptation Responses

Book Part

Part III

Pages

pp 615-628

Copyright 2013

DOI

10.1007/978-3-642-37753-2_46

Print ISBN

978-3-642-37752-5

Online ISBN

978-3-642-37753-2

Canian Title

978-3-642-37752-5
Online ISBN
978-3-642-37753-2
Series Title
Climate Change Management
Series ISSN
1610-2010

Publisher Springer Berlin Heidelberg

Copyright Holder

2 of 4 20/10/2014 2:00 PM

Optimization of a Stand-Alone Renewable Energy System for a Small Load Requirement - Springer

http://link.springer.com/chapter/10.1007/978-3-642-37753-2_46

Springer-Verlag Berlin Heidelberg Additional Links

· About this Book

Topics

- Environmental Economics
- · Climate Change Management and Policy
- Energy Policy, Economics and Management
- · Renewable and Green Energy
- Climate Change

Keywords

- HOMER
- · Hybrid systems
- Optimization
- Resource
- Whisper 100

Industry Sectors

- Finance, Business & Banking
- Energy, Utilities & Environment

eBook Packages

- · eBook Package english Business & Economics
- eBook Package english full Collection

Editors

- Walter Leal Filho

 ⁽²⁾
- Franziska Mannke

 (3)
- Romeela Mohee

 ⁽⁴⁾
- Veronika Schulte

 ⁽⁵⁾
- Dinesh Surroop

 ⁽⁶⁾

Editor Affiliations

- 2. Faculty of Life Science, Hamburg University of Applied Sciences
- 3. Faculty of Life Sciences, Hamburg University of Applied Sciences
- 4. Faculty of Engineering, Chemical and Environmental, University of Mauritius
- 5. Faculty of Life Sciences, Hamburg University of Applied Sciences
- · 6. Faculty of Engineering, Chemical and Environmental, University of Mauritius

Authors

- Shivneel Prasad (1)
- Ajal Kumar (1)
- Atul Raturi (1)

Author Affiliations

Audio Almadons	
• 1. Science Technology and Environment, University of the South Pacific, Suva, Fiji	
Continue reading	
To view the rest of this content please follow the download PDF link above.	
Ovar 9.5 million esignifies documents at your finanting	
Over 8.5 million scientific documents at your fingertips © Springer, Part of Springer Science+Business Media	
3 of 4	20/10/2014 2:00 PM
Optimization of a Stand-Alone Renewable Energy System for a Small Load Requirement - Springer	http://link.springer.com/chapter/10.1007/978-3-642-37753-2_4

• Ajal Kumar ⁽¹⁾
• Atul Raturi ⁽¹⁾

