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Abstract Investigation of genes, using data analysis and
computer-based methods, has gained widespread attention in
solving human cancer classification problem. DNA microar-
ray gene expression datasets are readily utilized for this pur-
pose. In this paper, we propose a feature selection method
using improved regularized linear discriminant analysis tech-
nique to select important genes, crucial for human cancer
classification problem. The experiment is conducted on sev-
eral DNA microarray gene expression datasets and promis-
ing results are obtained when compared with several other
existing feature selection methods.

Keywords Linear discriminant analysis (LDA) ·
Regularized LDA · Feature/gene selection ·
Classification accuracy

1 Introduction

Feature selection methods play significant role in identify-
ing crucial genes related to human cancers. It helps in under-
standing the gene regulation mechanism of cancer hetero-
geneity. DNA microarray gene expression data, consisting
of several thousands of gene expression profiles, has been
used widely in the past for cancer classification problem
[2,13,16,20]. The high feature dimensionality (i.e., number
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of gene expression profiles), compared to the low number
of samples, degrades the generalization performance of the
classifier and increases its computational complexity. This
problem is known as small sample size (SSS) problem [11].
These datasets along with feature selection methods provide
vital information and assistance in comprehending biological
and clinical characteristics. Since not all the genes are asso-
ciated to cancer classification task, it is necessary to remove
unimportant genes using feature selection or computational
data analysis methods.

Various feature selection methods have been developed [3,
4,7,9,12,13,15,21,23–25,27–31,36,37,39,41,43,44],
which can be broadly categorized into two main groups: filter
methods and wrapper methods. The filter methods are clas-
sifier independent whereas the wrapper methods are clas-
sifier dependent. Filter-based methods are computationally
economical and follow an open-loop approach: the selec-
tion of genes is independent of the classifier. Therefore, the
relevance of the extracted genes is obtained from a scoring
procedure that uses intrinsic properties of the genes’ expres-
sion profiles. Wrapper-based methods (like SVM-RFE1) can
provide high classification accuracy but are computation-
ally intensive and follow closed-loop approaches that depend
on the classifier for gene selection. Although wrapper-based
methods yield high classification accuracy, the gene sets they
select do not necessarily possess biologically or clinically
relevant attributes.

In this paper, we propose a feature selection method using
regularized linear discriminant analysis (RLDA) technique
[10]. This feature selection method falls under the filter

1 SVM-RFE [15] is a wrapper-based method. It is an iterative method
which works backward from an initial set of features. The SVM aims to
find maximum margin hyperplane between the two classes to minimize
classification error using some kernel function.

123



776 A. Sharma et al.

method category as it does not require a classifier during
training process to select features.

RLDA technique is one of the few pioneering techniques
in the pattern classification literature. RLDA technique is
used in the cases where SSS exist. In RLDA, a small per-
turbation, known as the regularization parameter α, is added
to within-class scatter matrix SW, to overcome SSS prob-
lem. The matrix SW is approximated by SW + αI and the
orientation matrix is computed by eigenvalue decomposition
(EVD) of (SW + αI)−1SB, where SB is between-class scat-
ter matrix. RLDA has been applied in face recognition and
bioinformatics area [5,6,14]. In RLDA, it can be computa-
tionally expensive to find the optimum value of the parame-
ter α as heuristic approach (e.g. cross-validation procedure,
[16]) is applied. The value of the parameter could be sensitive
and noisy especially when the number of training samples is
scarce. In human cancer classification problem, the DNA
microarray gene expression datasets, usually have very lim-
ited number of training samples which could adversely affect
the classification performance of the RLDA technique.

In order to find the gene subset associated with human can-
cers, we first determine the value of α for RLDA technique
without using any heuristic approach. We call our procedure
as improved RLDA technique. We use improved RLDA tech-
nique recursively to obtain crucial genes important for cancer
classification task. The proposed feature selection method
has been applied on several DNA microarray gene expres-
sion datasets and promising results have been obtained.

In the past, SVM has also applied recursively in SVM-RFE
method [15] to select features. SVM-RFE is a wrapper-based
method. It is an iterative method which works backward from
an initial set of features. The SVM aims to find maximum
margin hyperplane between the two classes to minimize clas-
sification error using some kernel function. The selection of
features by SVM-RFE is computationally intensive. It has
some other drawbacks as well due to applying maximum
margin criterion between two classes [46]. On the other hand,
RLDA-based recursive feature selection method, separates
the two classes by (1) shrinking within class variance, and
(2) increasing the between class variance.

2 Basic descriptions

In this section, we describe the basic notations used in the
paper. Let X = {x1, x2, . . . , xn} denote n training samples
(or feature vectors) in a d-dimensional space having class
labels � = {ω1, ω2, . . . , ωn}, where ω ∈ {1, 2, . . . , c} and c
is the number of classes. The dataset X can be subdivided into
c subsets X1, X2, . . ., Xc, where X j belongs to class j and
consists of n j number of samples such that n = ∑c

j=1 n j .
The data subset X j ⊂X and X1∪X2∪· · · ∪Xc = X. If μ j =
1/n j

∑
x∈X j

x is the centroid of X j and μ = 1/n
∑

x∈X x

is the centroid of X, then the total scatter matrix ST, within-
class scatter matrix SW and between-class scatter matrix SB

are defined as [8,18,19,33–35,45]

ST =
∑

x∈X

(x − μ)(x − μ)T,

SW =
c∑

j=1

∑

x∈X j

(x − μ j )(x − μ j )
T,

and SB =∑c
j=1 n j (μ j − μ)(μ j − μ)T.

In SSS problem, d > n, which will make scatter matrices
singular. Let rt be the rank of ST matrix. The eigenvector
decomposition of ST can be given as

ST = [U1, U2]

[
�T

0

] [
UT

1
UT

2

]

, (1)

where U1 ∈ R
d×rt corresponds to eigenvalues �T and

U2 ∈ R
d×(d−rt ) corresponds to the zero eigenvalues. The

matrix U1 is the range space of ST and the matrix U2 is the
null space of ST. Since the null space of ST does not contain
any discriminant information [17], the dimensionality can be
reduced from d-dimensional space to rt -dimensional space
by applying principal component analysis (PCA) [11,32]
as a pre-processing step. The range space of ST matrix,
U1 ∈ R

d×rt , will be used as a transformation matrix. In the
reduced dimensional space the scatter matrices can be com-
puted by: SW ← UT

1 SWU1 and SB ← UT
1 SBU1. After this

procedure SW ∈ R
rt×rt and SB ∈ R

rt×rt are reduced dimen-
sional within-class scatter matrix and reduced dimensional
between-class scatter matrix, respectively.

3 Improved RLDA technique for feature selection

In RLDA, the regularization of within-class scatter matrix SW

is carried out by adding a perturbation term α to the diagonal
elements of SW; i.e., ŜW = SW + αI. The addition of α will
make within-class scatter non-singular and invertible. This
would help to maximize the modified Fisher’s criterion

J (w, α) = wTSBw
wT(SW + αI)w

, (2)

where w ∈ R
rt×1 is the orientation vector. In order to

avoid any heuristic approach in the determination of the
parameter α, we solve Eq. 2 in the following manner. Let
us denote function f = wTSBw and a constraint function
g = wT(SW+αI)w−c = 0, where c > 0 be any constant. To
find the constrained relative-maximum of function f under
constrained curve g, we can use the method of Lagrange
multipliers [1] as follows:

∂ f

∂w
= λ

∂g

∂w
, (3)
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Table 1 Computation of the orientation matrix W using improved RLDA technique

Step 1. Compute range space of total scatter matrix ST, U1 ∈ R
d×rt , by applying PCA, where rt = rank(ST). Using U1, compute

between-class

scatter matrix and within-class scatter matrix in rt dimensional space: SB ← UT
1 SBU1 and SW ← UT

1 SWU1, where SB ∈ R
rt×rt and

SW ∈ R
rt×rt

Step 2. Perform EVD of S+WSB to find the highest eigenvalue λmax

Step 3. Perform EVD of (1/λmaxSB − SW) to find its highest eigenvalue, denote it as α

Step 4. Perform EVD of (SW + αI)−1SB to find rb eigenvectors w j ∈ R
rt×1 corresponding to the leading eigenvalues, where rb = rank(SB)

The eigenvectors w j are column vectors of the orientation matrix W′ ∈ R
rt×rb

Step 5. Compute the orientation matrix W ∈ R
d×rb in d-dimensional space: W = U1W′

where λ �= 0 is the Lagrange’s multiplier. Equation 3 is
the Lagrange’s function where we are interested in finding
the parameters (w, λ) that maximizes function f under the
constrained curve g. Substituting f = wTSBw and g =
wT(SW + αI)w − c in Eq. 3, we get

2SBw = λ(2SWw + 2αw),

or

(
1

λ
SB − SW

)

w = αw. (4)

The value of αw can be substituted in the constraint function
g, this will give us,

wTSBw = λc. (5)

Also from the constraint function wT(SW + αI)w − c = 0,
we get wT ŜWw = c. Dividing this term in Eq. 5, we get

λ = wTSBw

wT ŜWw
. (6)

We can observe the following things from Eq. 6: 1) the left-
hand term is the Lagrange’s multiplier (in Eq. 4), and 2)
the right-hand side is same as the Fisher’s modified criterion
defined in Eq. 2. In order to obtain the value of λ in Eq. 6,
we need to estimate ŜW. If the matrix is not regularize (i.e.,
α = 0) then ŜW = SW. By this substitution, we can obtain
approximate value of λ by maximizing wTSBw/wTSWw.
Now to find the maximum value owTSBw/wTSWwf, we
must have eigenvector w corresponding to the leading eigen-
value of S−1

W SB. However, since SW is singular and non-
invertible, S+W can be used in place of S−1

W , where S+W is the
pseudoinverse of SW. From the EVD of S+WSB, we can find
λmax which is the largest eigenvalue of S+WSB. The value of
λmax can be substituted in Eq. 4 (where λ = λmax), this will
enable us to find the value of α by doing EVD of ( 1

λ
SB−SW).

If rb = rank(SB) then EVD of ( 1
λ

SB−SW) will give rb finite
eigenvalues. Since the leading eigenvalue will correspond to
the most discriminant eigenvector [11,32], α is taken to be
the leading eigenvalue. Once the value of α is determined,
the orientation vector w can be solved from

(SW + αI)−1SBw = γ w. (7)

It can be shown from Lemma 1 that for improved RLDA
technique, its maximum eigenvalue is approximately equal
to the highest (finite) eigenvalue of Fisher’s criterion.

Lemma 1 The highest eigenvalue of improved RLDA is
approximately equivalent to the highest (finite) eigenvalue
of Fisher’s criterion.

Proof 1 From Eq. 7,

SBw j = γ j (SW + αI)w j , (8)

where α is the maximum eigenvalue of (1/λmaxSB − SW)

(from Eq. 4); λmax ≥ 0 is approximately the highest eigen-
value of Fisher’s criterion wTSBw/wTSWw (since λmax is
the largest eigenvalue of S+WSB) [22]; j = 1 . . . rb and
rb = rank(SB). Substituting αw = (1/λmaxSB − SW)w
(from Eq. 4, where λ = λmax) into Eq. 8, we get,

SBwm = γmSWwm + γm(1/λmaxSB − SW)wm,

or (λmax − γm)SBwm = 0

where γm = max(γ j ) and wm is the corresponding eigen-
vector. Since SBwm �= 0 (from Eq. 5), γm = λmax and
γ j < λmax, where j �= m. This concludes the proof. 	

Corollary 1 The value of regularization parameter is non-
negative; i.e., α ≥ 0 for rw ≤ rt , where rt = rank(ST) and
rw = rank(SW).

Proof Please see Appendix C. 	

Computing Eq. 7 for all the values of γ will give the ori-

entation matrix W ∈ R
rt×rb , having w as its column vectors.

The orientation matrix W is in rt -dimensional space, how-
ever, it can be transformed to d-dimensional space by W←
U1W. Therefore, we get W ∈ R

d×rb . Let a column vector
w ∈ W be used to transform d-dimensional space to one-
dimensional space and x ∈ X be any feature vector, we have

y = wTx,

or y =
d∑

i=1

wi xi , (9)
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Table 2 The classification accuracy of various feature selection
methods using four distinct classifiers on the SRBCT dataset

J4.8 (%) Naïve
Bayes (%)

kNN (%) SVM
pairwise (%)

Baseline accuracy 37 37 37 37

Information gain 68 68 90 90

Twoing rule 64 73 86 82

Sum minority 68 68 90 86

Max minority 46 78 90 90

Gini index 64 78 90 90

Sum of variances 54 64 90 86

t-statistic 54 64 90 86

One-dimensional
SVM

54 64 90 86

Lasso 90 70 80 75

Filter MRMR 65 35 55 85

Improved RLDA 75 90 95 100

Table 3 The classification accuracy of various feature selection
methods using four distinct classifiers on the MLL dataset

J4.8 (%) Naïve
Bayes (%)

kNN (%) SVM
pairwise (%)

Baseline accuracy 35 35 35 35

Information gain 60 74 86 100

Twoing rule 60 86 86 100

Sum minority 68 26 80 80

Max minority 74 34 74 80

Gini index 60 68 86 100

Sum of variances 60 54 86 100

t-statistic 60 54 86 100

One-dimensional
SVM

60 54 86 100

Lasso 87 100 93 93

Filter MRMR 100 100 93 100

Improved RLDA 100 93 100 100

where wi and xi are the elements of w and x, respectively. It
can be envisaged that if |wi xi | ≈ 0 (where | · | is the absolute
value), then the i th element is not contributing for the value
of y in Eq. 9; i.e., it can be discarded without sacrificing much
information. This concept can be extended for the orientation
matrix W and dataset X as

zi =
rb∑

k=1

n∑

j=1

|wik xi j | (10)

where i = 1, 2, . . . , d. If zi ≈ 0, then i th feature can be
discarded. Equation 10 can be applied recursively to discard
unimportant features as follows:

Table 4 The classification accuracy of various feature selection
methods using four distinct classifiers on the Acute Leukemia dataset

J4.8 (%) Naïve
Bayes (%)

kNN (%) SVM
pairwise (%)

Baseline accuracy 71 71 71 71

Information gain 91 100 97 97

Twoing rule 91 97 97 97

Sum minority 91 97 97 97

Max minority 91 97 97 97

Gini index 91 97 97 97

Sum of variances 91 97 97 97

t-statistic 91 100 97 97

One-dimensional
SVM

91 85 88 97

Lasso 91 94 85 91

Filter MRMR 65 71 74 86

Improved RLDA 94 94 85 100

Step 0. Define q ∈ (n, d)2 and set l = d.
Step 1. Compute W ∈ R

l×rb (see Table 1).
Step 2. Compute zi using Eq. 10 for i = 1, 2, . . . , l.
Step 3. Sort zi in descending order; i.e., if s = sort(zi ) then

s1 > s2 > · · · > sl .
Step 4. Discard least important feature corresponding to sl .

Let the cardinality of the remaining feature set be
l − 1 and data subset be Xl−1 ∈ R

l×n .
Step 5. Conduct X← Xl−1 and l ← l − 1.
Step 6. Continue Steps 1-5 until l = q.

The above process will give q-features with the data subset
Xq ∈ R

q×n , which can be used by a classifier to obtain
classification performance.

The computational requirement for Step 1 of the technique
(Table 1) would be O(dn2); for Step 2 would be O(n3); for
Step 3 would be O(n3); for Step 4 would be O(n3); and, for
Step 5 would be O(dn2). Therefore, the total estimated for
SSS case (d 
 n) would be O(dn2). If the q features are
to be selected from the total d features then total estimated
computational complexity would be O(dn2(d − l)).

4 Experimentation

In this experiment, we have utilized three DNA microarray
gene expression datasets.3 The description of these datasets
is given as follows.

2 Since RLDA or Improved RLDA is a method for solving small sample
size (SSS) problem, the value of q has to be in (n, d).
3 Most of the datasets are downloaded from the Kent Ridge
Bio-medical Dataset (KRBD) (http://datam.i2r.a-star.edu.sg/datasets/
krbd/). The datasets are transformed or reformatted and made available

123

http://datam.i2r.a-star.edu.sg/datasets/krbd/
http://datam.i2r.a-star.edu.sg/datasets/krbd/


Improved regularized linear discriminant analysis 779

Table 5 The classification
accuracy as a function of the
number of selected features of
Improved RLDA and several
feature selection methods using
four distinct classifiers on the
SRBCT dataset

Feature selection + classifier 10 % of
features (%)

20 % of
features (%)

30 % of
features (%)

Average classification
accuracy (%)

Information gain + J4.8 65 65 65 81.7

Information gain + Naïve Bayes 85 65 55

Information gain + kNN 100 90 90

Information gain + SVM 100 100 100

Twoing rule + J4.8 65 65 65 82.1

Twoing rule + Naïve Bayes 85 70 55

Twoing rule + kNN 100 90 90

Twoing rule + SVM 100 100 100

Sum minority + J4.8 60 65 65 79.6

Sum minority + Naïve Bayes 75 55 55

Sum minority + kNN 100 95 85

Sum minority + SVM 100 100 100

Max minority + J4.8 65 65 65 83.3

Max minority + Naïve Bayes 95 65 65

Max minority + kNN 100 90 90

Max minority + SVM 100 100 100

Gini index + J4.8 65 75 75 85.8

Gini index + Naïve Bayes 90 70 65

Gini index + kNN 100 95 95

Gini index + SVM 100 100 100

Sum of variances + J4.8 65 65 65 79.2

Sum of variances + Naïve Bayes 60 60 55

Sum of variances + kNN 100 90 90

Sum of variances + SVM 100 100 100

Improved RLDA + J4.8 75 75 75 88.3

Improved RLDA + Naïve Bayes 90 90 70

Improved RLDA + kNN 95 95 95

Improved RLDA + SVM pairwise 100 100 100

SRBCT dataset [20] The small round blue-cell tumor
dataset consists of 83 samples with each having 2308 genes.
This is a four class classification problem. The tumors are
Burkitt lymphoma (BL), the Ewing family of tumors (EWS),
neuroblastoma (NB) and rhabdomyosarcoma (RMS). There
are 63 samples for training and 20 samples for testing. The
training set consists of 8, 23, 12 and 20 samples of BL, EWS,
NB and RMS, respectively. The test set consists of 3, 6, 6 and
5 samples of BL, EWS, NB and RMS, respectively.

MLL Leukemia dataset [2] This dataset has three classes
namely ALL, MLL and AML. The training set contains 57
leukemia samples (20 ALL, 17 MLL and 20 AML) whereas

Footnote 3 continued
by KRBD repository and we have used them without any further pre-
processing. Some datasets which are not available on KRBD repository
are downloaded and directly used from respective authors’ supplement
link. The URL addresses for all the datasets are given in the Reference
Section.

the test set contains 15 samples (4 ALL, 3 MLL and 8 AML).
The dimension of the MLL dataset is 12582.

Acute Leukemia dataset [13] This dataset consists of DNA
microarray gene expression data of human acute leukemia
for cancer classification. Two types of acute leukemia data
are provided for classification namely acute lymphoblastic
leukemia (ALL) and acute myeloid leukemia (AML). The
dataset is subdivided into 38 training samples and 34 test
samples. The training set consists of 38 bone marrow samples
(27 ALL and 11 AML) over 7129 probes. The test set consists
of 34 samples with 20 ALL and 14 AML, prepared under
different experimental conditions. All the samples have 7129
dimensions and all are numeric.

The classification performance of the proposed feature
selection method has been gauged by using the above
three datasets. Tables 2, 3 and 4 show classification accu-
racy of the proposed method compared with several other
existing feature selection methods on the SRBCT, MLL
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Table 6 The classification
accuracy as a function of the
number of selected features of
Improved RLDA and several
feature selection methods using
four distinct classifiers on the
MLL dataset

Feature selection + classifier 10 % of
features (%)

20 % of
features (%)

30 % of
features (%)

Average classification
accuracy (%)

Information gain + J4.8 67 67 67 88.5

Information gain + Naïve Bayes 100 100 100

Information gain + kNN 87 87 87

Information gain + SVM 100 100 100

Twoing rule + J4.8 67 67 67 88.5

Twoing rule + Naïve Bayes 100 100 100

Twoing rule + kNN 87 87 87

Twoing rule + SVM 100 100 100

Sum minority + J4.8 67 67 67 88.5

Sum minority + Naïve Bayes 100 100 100

Sum minority + kNN 87 87 87

Sum minority + SVM 100 100 100

Max minority + J4.8 67 67 67 88.5

Max minority + Naïve Bayes 100 100 100

Max minority + kNN 87 87 87

Max minority + SVM 100 100 100

Gini index + J4.8 67 67 67 88.5

Gini index + Naïve Bayes 100 100 100

Gini index + kNN 87 87 87

Gini index + SVM 100 100 100

Sum of variances + J4.8 67 67 67 88.5

Sum of variances + Naïve Bayes 100 100 100

Sum of variances + kNN 87 87 87

Sum of variances + SVM 100 100 100

Improved RLDA + J4.8 100 100 100 96.2

Improved RLDA + Naïve Bayes 100 100 100

Improved RLDA + kNN 87 87 80

Improved RLDA + SVM pairwise 100 100 100

and Acute Leukemia datasets, respectively.4 Four classi-
fiers from WEKA (http://www.cs.waikato.ac.nz/ml/weka/)
used are J4.8, Naïve Bayes, kNN (where k = 1) and SVM
pairwise. The classification accuracy for the SRBCT and
MLL datasets is obtained from [40]. For all the datasets,
the features are ranked by Rankgene program [38]. The
Rankgene program computes the features for the following
feature selection methods: Information gain, Twoing rule,
Sum minority, Max minority, Gini index, Sum of variances,
t-statistic and one-dimensional SVM [38]. For all the datasets
150 genes are selected as selected by [40]. In addition, Lasso
[42] and filter MRMR [26] are used for feature selection. The
Lasso method deflates the collinearity effect on the features.
It produces sparse parameters that can be used to identify

4 The cross-validation-based results are shown in Appendix A. The
comparison of improved RLDA with different values of regularization
parameter has been shown in Appendix B.

important genes. The number of features selected by Lasso
on SRBCT, MLL and Acute Leukamia is 38, 39 and 16,5

respectively. The filter MRMR method select features based
on maximal statistical dependency criterion based on mutual
information. It can be observed from Table 2 that the pro-
posed method achieves 75 % classification accuracy using
the J4.8 classifier; 90 % classification accuracy using the
Naïve Bayes classifier; 95 % classification accuracy using
the kNN classifier and 100 % classification accuracy by the
SVM pairwise classifier. In the three out of four cases, the
classification accuracy obtained by improved RLDA is the
highest. Similarly, the classification accuracy on the MLL
dataset (Table 3) is the highest for improved RLDA in three

5 Note that for all the feature selection methods except Lasso method
the number of selected features is 150 (in Tables 2, 3 and 4). The Lasso
method itself obtains the optimal number of selected features and there-
fore cannot be adjusted for a predefined number of selected features.
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Table 7 The classification
accuracy as a function of the
number of selected features of
Improved RLDA and several
feature selection methods using
four distinct classifiers on the
Acute Leukemia dataset

Feature selection + classifier 10 % of
features (%)

20 % of
features (%)

30 % of
features (%)

Average classification
accuracy (%)

Information gain + J4.8 91 91 91 90.6

Information gain + Naïve Bayes 97 100 100

Information gain + kNN 77 79 79

Information gain + SVM 97 94 91

Twoing rule + J4.8 91 91 91 89.1

Twoing rule + Naïve Bayes 94 97 97

Twoing rule + kNN 77 76 79

Twoing rule + SVM 97 91 88

Sum minority + J4.8 91 91 91 88.3

Sum minority + Naïve Bayes 94 97 97

Sum minority + kNN 77 73 73

Sum minority + SVM 97 91 88

Max minority + J4.8 91 91 91 89.2

Max minority + Naïve Bayes 94 97 97

Max minority + kNN 77 77 79

Max minority + SVM 97 91 88

Gini index + J4.8 91 91 91 88.0

Gini index + Naïve Bayes 94 97 97

Gini index + kNN 79 70 70

Gini index + SVM 97 91 88

Sum of variances + J4.8 91 91 91 89.2

Sum of variances + Naïve Bayes 94 97 97

Sum of variances + kNN 77 77 79

Sum of variances + SVM 97 91 88

Improved RLDA + J4.8 91 91 91 92.5

Improved RLDA + Naïve Bayes 97 100 100

Improved RLDA + kNN 88 79 82

Improved RLDA + SVM pairwise 97 97 97

out of four cases method when compared with several other
feature selection methods using four distinct classifiers. On
the Acute Leukemia dataset (Table 4), the classification accu-
racy of improved RLDA is the highest for the J4.8 classifier
(94 %) and the SVM pairwise classifier (100 %). In total
of 12 cases (Tables 2–4), improved RLDA is giving highest
results in eight cases. It can, therefore, be concluded that the
proposed method is exhibiting promising results.

Next, we considered different number of selected features
by Improved RLDA and several feature selection method,
and shown the evolution of the performance of the classifiers
with respect to the number of selected features. The results
are shown in Tables 5, 6 and 7. It can be observed from the
Tables 5–7 that in most of the cases the average classifica-
tion accuracy for Improved RLDA is consistently higher than
other feature selection methods.

Furthermore, we conducted experiments to see the bio-
logical significance of the selected features by the proposed

method. We use SRBCT data as a prototype to show the
biological significance using Ingenuity Pathway Analysis.6

The selected 150 features from the proposed algorithm are

6 Ingenuity Pathway Analysis (IPA) (http://www.ingenuity.com) is a
software that helps researchers to model, analyze, and understand the
complex biological and chemical systems at the core of life science
research. IPA has been broadly adopted by the life science research
community. IPA helps to understand complex ’omics data at multi-
ple levels by integrating data from a variety of experimental platforms
and providing insight into the molecular and chemical interactions, cel-
lular phenotypes, and disease processes of the system. IPA provides
insight into the causes of observed gene expression changes and into
the predicted downstream biological effects of those changes. Even if
the experimental data is not available, IPA can be used to intelligently
search the Ingenuity Knowledge Base for information on genes, pro-
teins, chemicals, drugs, and molecular relationships to build biologi-
cal models or to get up to speed in a relevant area of research. IPA
provides the right biological context to facilitate informed decision-
making, advance research project design, and generate new testable
hypotheses.

123

http://www.ingenuity.com


782 A. Sharma et al.

Fig. 1 Top five high-level biological function on selected 150 genes
of SRBCT by improved RLDA-based feature selection method

used for this purpose. Out of 150 genes, 10 genes were
found unmapped in IPA. The top five high-level biological
functions obtained are shown in Fig. 1. In the figure, the
y axis denotes the negative of logarithm of p-values and
x axis denotes the high level functions. Since the cancer
function is of paramount interest, we investigated them fur-
ther. There are 61 cancer sub-functions obtained from the
experiment. Top 25 cancer sub-functions with significant p-
values are shown in Table 8. In IPA, the p-value reflects the
enrichment of a given function to a set of focused genes.
The smaller the p-value is, the less likely that the associ-
ation is random, and the more significant the association.
In general p-values less than 0.05 indicate a statistically
significant, non-random association. The p-value is calcu-
lated using the right-tailed Fisher exact test (IPA, Available
at: http://www.ingenuity.com) [28,29]. In the table, the p-
values and the number of selected genes are depicted cor-
responding to the selected functions. The selected genes
by the proposed method provide significant p-values above
the threshold (as specified in IPA). This shows that the
features selected by the proposed method contain useful
information for discriminatory purpose and have biological
significance.

We have also carried out sensitivity analysis to check the
robustness of the proposed method. For this purpose, we use
the SRBCT dataset as a prototype and select top 100 genes.
After this selection, we contaminate the dataset by adding
Gaussian noise, then applied the method again to find the top
100 genes. The generated noise levels are 1, 2 and 5 % of the
standard deviation of the original gene expression values. The
number of genes which are common after contamination and
before contamination is noted. This contamination of data
and selection of genes are repeated 20 times. The average
number of genes over 20 iterations is depicted in Fig. 2. It
can be observed from the figure that the proposed method is
able to capture the majority of the original genes in the noisy
environmental condition.

Table 8 Cancer sub-functions

Functions p value # Selected
genes

Metastatic colorectal cancer 6.99E−08 12

Tumorigenesis 1.01E−07 62

Neoplasia 5.05E−07 59

Cancer 6.97E−07 58

Uterine cancer 2.87E−06 19

Benign tumor 3.75E−06 17

Leiomyomatosis 1.06E−05 12

Carcinoma 1.11E−05 47

Adenocarcinoma 1.81E−05 17

Gastrointestinal tract cancer 2.60E−05 24

Colorectal cancer 3.46E−05 22

Uterine leiomyoma 5.62E−05 10

Metastasis 6.11E−05 13

Genital tumor 6.69E−05 22

Prostate cancer 1.42E−04 16

Trisomy 8 myelodysplastic syndrome 2.25E−04 2

Central nervous system tumor 2.87E−04 10

Digestive organ tumor 3.21E−04 27

Breast cancer 3.41E−04 20

Brain cancer 4.28E−04 9

Leukemia 6.88E−04 11

Hematologic cancer 7.14E−04 14

Endometrial carcinoma 8.86E−04 8

Neuroblastoma 1.25E−03 5

Hematological neoplasia 1.38E−03 15

Endocrine gland tumor 1.42E−03 11

Tumorigenesis of carcinoma 1.54E−03 2

B-cell leukemia 1.68E−03 6

Entrance of tumor cell lines 2.04E−03 2

Endometrial cancer 2.12E−03 7

In order to check the sensitivity analysis with respect
to the classification accuracy, we contaminated the dataset
by adding Gaussian noise (as above) and selected 150 fea-
tures using the improved RLDA technique. The classifica-
tion accuracy is obtained by using the SVM-pairwise classi-
fier. The results are shown in Table 9. It can observed from
Table 9 that for low level noise the degradation in classifi-
cation performance is not enough. But when the noise level
increases the classification accuracy deteriorates (especially
on the MLL dataset and the Acute Leukemia dataset).

Next, we carried out experimentation to obtain ROC curve
and AUC analysis. For the ROC curve, we use sensitiv-
ity and specificity as the two measures. The sensitivity is
given as True Positive/(True Positive+False Negative) and
the specificity is given as True negative/(True Negative +
False Positive). We varied the noise level and select 150
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Fig. 2 Sensitivity analysis for the proposed feature selection method
on the SRBCT dataset at different noise levels. The y axis depicts the
average number of common genes over 20 iterations and x axis depicts
the added noise in percentage

Table 9 Sensitivity analysis with respect to classification accuracy on
the SRBCT, MLL and Acute Leukemia dataset

Noise level SRBCT (%) MLL (%) Acute leukemia (%)

Without noise 100 100 97

1 % 100 100 97

2 % 100 93 96

5 % 100 79 93

10 % 100 45 59
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Fig. 3 The ROC curve

genes using improved RLDA and then use SVM-pairwise to
compute sensitivity and specificity. The ROC curve is shown
in Fig. 3. This curve shows the trade-off between sensitiv-
ity and specificity. The AUC provides the overall accuracy
and is a useful parameter for comparing the performance.
The high value of AUC parameter indicates high accu-

racy. The value of AUC is computed to be 0.9674 which is
promising.

5 Conclusion

In this paper, we presented a feature selection method using
improved regularized linear discriminant analysis technique.
Three DNA microarray gene expression datasets have been
utilized to see the performance of the proposed method. It
was observed that the method is achieving encouraging clas-
sification accuracy using small number of selected gene.
The biological significance has also been demonstrated by
performing functional analysis. Moreover, robustness of the
method was exhibited by conducting sensitivity analysis and
encouraging results are obtained. The sensitivity analysis
with respect to classification accuracy and ROC curve have
also been discussed.

Appendix A

In this section, we use cross-validation procedure to compute
average classification accuracy using four distinct classifiers
and the proposed feature selection method. Three datasets
have been used for this purpose are SRBCT, MLL and Acute
Leukemia. The classification accuracy using fold k = 5 and
fold k = 10 are given in Tables 10, 11 and 12. It can be
observed that the classification accuracy obtained by k-fold
cross-validation procedure is comparably similar to the clas-
sification accuracy obtained in Tables 2-4.

Table 10 k-fold cross-validation using improved RLDA and four dis-
tinct classifiers on the SRBCT dataset

Fold J4.8 Naïve bayes kNN SVM pairwise

k = 5 80 % 89 % 92 % 100 %

k = 10 88 % 92 % 95 % 100 %

Table 11 k-fold cross-validation using improved RLDA and four dis-
tinct classifiers on the MLL dataset

Fold J4.8 Naïve bayes kNN SVM pairwise

k = 5 91 % 94 % 94 % 95 %

k = 10 87 % 93 % 95 % 97 %

Table 12 k-fold cross-validation using improved RLDA and four dis-
tinct classifiers on the Acute Leukemia dataset

Fold J4.8 Naïve bayes kNN SVM pairwise

k = 5 91 % 97 % 87 % 94 %

k = 10 87 % 100 % 95 % 98 %
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Table 13 Classification accuracy (in percentage) of RLDA and
improved RLDA

Database δ = 0.001 δ = 0.01 δ = 0.1 δ = 1 Improved
RLDA

Acute Leukemia 98.6 98.6 98.6 100 100.0

MLL 95.7 95.7 95.7 95.7 100.0

SRBCT 100.0 100.0 100.0 96.2 100.0

The highest classification accuracies obtained are depicted in bold fonts

Appendix B

In this appendix, we compare different values of regulariza-
tion parameter with the proposed improved RLDA technique.
In order to show this, we computed classification accuracy
on four different values of α for RLDA technique. These
are δ = [0.001, 0.01, 0.1, 1], where α = δ ∗ λW and λW is
the maximum eigenvalue of within-class scatter matrix. We
applied threefold cross-validation procedure on a number of
datasets and shown the results in columns 2–5 of Table 11.
The last column of the table denotes the classification accu-
racy using improved RLDA technique (Table 13).

It can be observed from the table that the different val-
ues of the regularization parameter give different classifica-
tion accuracies and therefore, the choice of the regularization
parameter affects the classification performance. Thus, it is
important to select the regularization parameter correctly to
get the good classification performance. It can be observed
that for all the datasets, the proposed technique is exhibiting
promising results.

Appendix C

Corollary 1 The value of regularization parameter is non-
negative; i.e., α ≥ 0 for rw ≤ rt , where rt = rank(ST) and
rw = rank(SW).

Proof From Eq. 2, we can write

J = wTSBw
wT(SW + αI)w

, (11)

where SB ∈ R
rt×rt and SW ∈ R

rt×rt . We can rearrange the
above expression as

wTSBw = JwT(SW + αI)w (12)

The eigenvalue decomposition (EVD) of SW matrix
(assuming rw < rt ) can be given as SW = U	2UT, where

U ∈ R
rt×rt is an orthogonal matrix, �2 =

[
�2

w 0
0 0

]

∈ R
rt×rt

and �w = diag(q2
1 , q2

2 , . . . , q2
rw

) ∈ R
rw×rw are diago-

nal matrices (as rw < rt ). The eigenvalues q2
k > 0 for

k = 1, 2, . . . , rw. Therefore,

S′W = (SW + αI) = UDUT, where D = �2 + αI

or D−1/2UTS′WUD−1/2 = I (13)

The between class scatter matrix SB can be transformed
by multiplying UD−1/2 on the right side and D−1/2UT on
the left side of SB as D−1/2UTSBUD−1/2. The EVD of this
matrix will give

D−1/2UTSBUD−1/2 = EDBET, (14)

where E ∈ R
rt×rt is an orthogonal matrix and DB ∈ R

rt×rt

is a diagonal matrix. Equation 14 can be rearranged as

ETD−1/2UTSBUD−1/2E = DB, (15)

Let the leading eigenvalue of DB isγ and its corresponding
eigenvector is e ∈ E. Then Eq. 15 can be rewritten as

eTD−1/2UTSBUD−1/2e = γ, (16)

The eigenvector e can be multiplied right side and eT on left
side of Eq. 13, we get

eTD−1/2UTS′WUD−1/2e = 1 (17)

It can be seen from Eqs. 13 and 15 that matrix W =
UD−1/2E diagonalizes both SB and S′W, simultaneously.
Also vector w = UD−1/2e simultaneously gives γ and unity
eigenvalue in Eqs. 16 and 17. Therefore, w is a solution of
Eq. 12. Substituting w = UD−1/2e in Eq. 12, we get J = γ ;
i.e., w is a solution of Eq. 12.

From Lemma 1, the maximum eigenvalue of expression
(SW + αI)−1SBw = γ w is γm = λmax > 0 (i.e., real, pos-
itive and finite). Therefore, the eigenvectors corresponding
to this positive γm should also be in real hyperplane (i.e., the
components of the vector w have to have real values). Since
w = UD−1/2e with w to be in real hyperplane, we must have
D−1/2 to be real.

Since D = �2 + αI = diag(q2
1 + α, q2

2 + α, . . . , q2
rw
+

α, α, . . . , α), we have

D−1/2 = diag(1/

√
q2

1 + α, 1/

√
q2

2 + α, . . . , 1/

√
q2

rw
+ α,

1/
√

α, . . . , 1/
√

α).

Therefore, the elements of D−1/2, must satisfy 1/

√
q2

k + α >

0 and 1/
√

α > 0 for k = 1, 2, . . . , rw (note rw < rt ); i.e., α

cannot be negative or α > 0. Furthermore, if rw = rt then
matrix SW will be a non-singular matrix and its inverse will
exist. In this case, regularization is not required and therefore
α=0. Thus, α≥0 for rw≤rt . This concludes the proof. 	
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