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Because a nearly constant distance between two neighbouring

Ca atoms, local backbone structure of proteins can be repre-

sented accurately by the angle between Cai21ACaiACai11 (h)

and a dihedral angle rotated about the CaiACai11 bond (s). h
and s angles, as the representative of structural properties of

three to four amino-acid residues, offer a description of back-

bone conformations that is complementary to u and w angles

(single residue) and secondary structures (>3 residues). Here,

we report the first machine-learning technique for sequence-

based prediction of h and s angles. Predicted angles based on

an independent test have a mean absolute error of 9� for h and

34� for s with a distribution on the h-s plane close to that of

native values. The average root-mean-square distance of 10-

residue fragment structures constructed from predicted h and s
angles is only 1.9Å from their corresponding native structures.

Predicted h and s angles are expected to be complementary to

predicted / and w angles and secondary structures for using in

model validation and template-based as well as template-free

structure prediction. The deep neural network learning tech-

nique is available as an on-line server called Structural Property

prediction with Integrated DEep neuRal network (SPIDER) at

http://sparks-lab.org. VC 2014 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23718

Introduction

Template-based and template-free protein-structure prediction

relies strongly on prediction of local backbone structures.[1,2]

Protein local structure prediction is dominated by secondary

structure prediction with its accuracy stagnant around 80% for

more than a decade.[3,4] However, secondary structures are

only a coarse-grained description of protein local structures in

three states (helices, sheets, and coils) that are somewhat arbi-

trarily defined because helices and sheets are often not in

their ideal shapes in protein structures. This arbitrariness has

limited the theoretically achievable accuracy of three-state pre-

diction to 88–90%.[4,5] Moreover, predicted coil residues do not

have a well-defined structure.

An alternative approach to characterize the local backbone

structure of a protein is to use three dihedral or rotational

angles about the NACa bond (u), the CaAC bond (w), and the

CAN bond (x). A schematic illustration is shown in Figure 1.

Because x angles are restricted to 180� (the majority) or 0�

due to rigid planar peptide bonds, two dihedral angles (/ and

w) essentially determine the overall backbone structure. Unlike

secondary structures, these dihedral angles (/ and w) can be

predicted as continuous variables and their predicted accuracy

has been improved over the years[6–8] so that it is closer to

dihedral angles estimated according to NMR chemical shifts.[9]

Predicted backbone dihedral angles were found to be more

useful than predicted secondary structure as restrains for ab

initio structure prediction.[9,10] It has also been utilized for

improving sequence alignment,[11] secondary structure predic-

tion,[3,12,13] and template-based structure prediction and fold

recognition.[14–16] However, unlike the secondary structure of

proteins, u and w are limited to the conformation of a single

residue.

Two different angles can also be used for representing pro-

tein backbones. As shown in Figure 1, they are the angle

between Cai21ACaiACai11 (hi) and a dihedral angle rotated

about the CaiACai11 bond (si). This two-angle representation

is possible because neighbouring Ca atoms mostly have a

fixed distance (3.8Å) due to the fixed plane in

Cai21ACANACai. These two inter-residue angles (h and s)

reflect the conformation of four connected, neighbouring resi-

dues that is longer than a single-residue conformation repre-

sented by u and w angles. By comparison, a conformation

represented by helical or sheet residues involves in an
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undefined number of residues (4 for 310 helix, 5 for a-helix,

and an undefined number of residues for sheet residues).

Thus, secondary structure, //w and h/s provide complimentary

local structural information along the backbone. Indeed, both

predicted //w and secondary structure are useful for

template-based structure prediction.[14]

In this article, we will develop the first machine-learning

technique to predict h and s from protein sequences. This tool

is needed not only because these two angles yield local struc-

tural information complementary to secondary structure and

//w angles but also because they have been widely used in

coarse-grained models for protein dynamics,[17] folding,[18]

structure prediction,[19,20] conformational analysis,[21] and

model validation.[22] That is, accurate prediction of h and s will

be useful for template or template-free structure prediction as

well as validation of predicted models. Using 4590 proteins for

training and cross validation and 1199 proteins for an inde-

pendent test, we have developed a deep-learning neural-net-

work-based method that achieved h and s angles within 9 and

34 degrees, in average, of their native values.

Method

Datasets

In this study, we obtained a dataset of 5840 proteins with less

than 25% sequence identity and X-ray resolution better than

2 Å from the protein sequence culling server PISCES.[23] After

removing 51 proteins with obsolete IDs or missing data, the

final dataset consists of 5789 proteins with 1,246,420 residues.

We randomly selected 4590 proteins from this dataset for

training and cross-validation (TR4590) and used the remaining

1199 proteins for an independent test (TS1199).

Deep neural-network learning

An Artificial Neural Network (ANN) consists of highly intercon-

nected, multilayer processing units called neurons. Each neu-

ron combines its inputs with a nonlinear sigmoid activation

function to produce an output. Deep neural networks refer to

feed-forward ANNs with three or more hidden layers. Multi-

layer networks were not widely used because of the difficulty

to train neural-network weights. This has changed due to

recent advances through unsupervised weight initialization,

followed by fine-tuned supervised training.[24,25] In this study,

unsupervised weight initialization was done by stacked sparse

auto-encoder. A stacked auto-encoder treats each layer as an

auto-encoder that maps the layer’s inputs back to themselves.

During training auto-encoders a sparsity penalty was utilized

to prevent learning of the identity function.[26] Initialised

weights were then refined by standard back propagation. The

stacked sparse auto-encoder used in this study consists of

three hidden layers with 150 hidden nodes in each layer

(Fig. 2). The input data was normalised so that each feature is

in the range of 0 to 1. For residues near the ends of a protein,

the features of the amino acid residue at the other end of the

protein were duplicated so that a full window could be used.

The learning rate was initialised to start at 0.5 and was then

decreased as training progressed. In this study, we used the

deep neural network MATLAB toolbox implemented by

Palm.[27]

Input features

Each amino acid was described by a vector of input features

that include 20 values from the Position Specific Scoring

Matrix generated by PSI-BLAST[28] with three iterations of

searching against nonredundant sequence database with an E-

value cut off of 0.001. We also used seven representative

amino-acid properties: a steric parameter (graph shape index),

hydrophobicity, volume, polarizability, isoelectric point, helix

probability, and sheet probability.[29] In addition, we used pre-

dicted secondary structures (three probability values for helix,

sheet, and coils) and predicted solvent accessible surface area

(one value) from SPINE-X.[3] That is, this is a vector of 31

dimensions per amino acid residue. As before, we also used a

window size of 21 amino acids (10 amino acids at each side of

the target amino acid). This led to a total of 651 input features

(21 3 31) for a given amino acid residue.

Output

Here, we attempt to predict two angles. One is h, the angle

between three consecutive Ca atoms of a protein backbone.

The other one is s, the dihedral angle between four consecu-

tive Ca atoms of protein backbone. Two angles are predicted

at the same time. To remove the effect of periodicity, we used

four output nodes that correspond to Sin(h), Cos(h), Sin(s), and

Cos(s), respectively. Predicted sine and cosine values were con-

verted back to angles by using h5tan21½sin hð Þ=cos hð Þ� and

s5tan21½sin sð Þ=cos sð Þ�. Such transformation is widely used in

signal processing and speech recognition.[30]

Figure 1. The schematic illustration of the protein backbone and associated

angles. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]

Figure 2. The general architecture of the stacked sparse auto-encoder

deep neural network. Four output nodes are Sin(h), Cos(h), Sin(s), and

Cos(s), respectively. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]
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Evaluation methods

We investigated the effectiveness of our proposed method

using tenfold cross validation (TR4590) and independent test

sets (TS1199). In tenfold cross validation, TR4590 was divided

into 10 groups. Nine groups were used as a training dataset

while the remaining group was used for test. This process was

repeated 10 times until all the 10 groups were used once as

the test dataset. In addition to tenfold cross validation, TR4590

was used as the training set and TS1199 was used as an inde-

pendent test set. Comparison between tenfold cross validation

and the test gives an indicator for the generality of the predic-

tion tool. We evaluated the accuracy of our prediction by

mean absolute error (MAE), the average absolute difference

between predicted and experimentally determined angles. The

periodicity of s angles was taken care of by utilizing the

smaller value of the absolute difference di ð5jsPred
i 2sExpt

i jÞ and

3602di for average.

Result

Table 1 compares the results of tenfold cross validation based

on TR4590 and the independent test (TS1199). h angles with a

range of 0 to 180� were predicted significantly more accurate

than s angles with a range of 2180� to 180�. The MAE is <9�

for h but 33–34� for s. This level of accuracy can be compared

to the baseline MAE values of 18.8� for h and 86.2� for s if h
and s are assigned randomly according to their respective dis-

tributions. Accuracy for angles differs significantly in secondary

structure types. The angles for helical residues have the high-

est accuracy (MAE<5� for h and 17� for s. The MAE for sheet

residues is about twice larger than that for helical residues.

Angles for coil residues have the largest error (s in particular).

Different levels of accuracy in different secondary structural

types reflect the fact that helical structures are more locally

stabilized than sheet structures while coil residues do not have

a well-defined conformation. Similar trends were observed for

prediction of backbone / and w angles.[6–9] We also noted

that MAEs from tenfold cross validation and from the inde-

pendent test are essentially the same. This indicates the

robustness of the method trained. Thus, here and hereafter,

we will present the result based on the independent test only.

Actual and predicted distributions of h and s for TS1199 are

shown in Figure 3. Predicted and actual distributions agree

with each other very well. Both predicted and actual peaks for

h angles are located at 92� and 119�, respectively. Actual peaks

for s angles are also in good agreement with those predicted

ones at 50� and 2164�, respectively. Predicted peaks, however,

are slightly narrowly than native peaks for all cases. Predicted

and actual angle distributions also agree in a two-dimensional

plane of h and s in Figure 4, the locations of three major popu-

lations were well captured by predicted distributions.

Table 2 lists the MAEs for 20 individual residue types along

with their frequencies of occurrence in the TS1199 dataset.

Glycine (G) has the largest MAE, corresponding to the fact that

it is the most flexible residue due to lack of a side chain. Leu-

cine (L), has the smallest MAE and interestingly also the most

frequently occurred residue (9.2%). The angles for several other

small hydrophobic residues [isoleucine (I), valine (V), and ala-

nine (A)] are also in the pack of residues with smallest errors.

There is no strong correlation between the MAE of an amino

acid residue type and its frequency of occurrence.

In Figure 5, MAEs for predicted angles are shown as a func-

tion of relative solvent accessible surface area. MAEs for h and

s have similar trend: two peaks separated by a valley (although

in a smaller magnitude for h). Both angles have the highest

accuracy (the smallest error) at an intermediate range of sol-

vent accessibility and the lowest accuracy (the largest error) at

90–100% solvent accessibility. The lowest accuracy at 90–100%

solvent accessibility is likely due to the smallest number of res-

idues at 90–100% solvent-accessible and 20% more coil resi-

dues in fully exposed residues.[3]

Figure 6 displays the fraction of proteins with more than a

given fraction of correctly predicted angles (h and s). Here, a

correct prediction is defined as 36� or less from the actual

angle. We use 36� as a cut off value because it is relatively

Table 1. Performance of h and s angle prediction based on the MAE as

compared to h and s angles calculated from / and w angles predicted

by SPINE-X for two datasets (tenfold cross validation for TR4590 and

independent test for TS1199).

MAE TR4590(�) TS1199(�)

TS1199(�)from

predicted / and w

h2All 8.57 6 0.01 8.6 9.6

h2Helix 4.50 6 0.02 4.5 4.5

h2Sheet 10.45 6 0.02 10.6 11.3

h2Coil 11.437 6 0.01 11.4 13.8

s 33.4 6 0.3 33.6 37.7

s2Helix 17.1 6 0.9 16.9 17.8

s2Sheet 32.4 6 0.1 33.1 39.1

s2Coil 50.1 6 0.3 50.2 56.4

Figure 3. Predicted and actual distributions of h (a) and s (b) angles for the

TS1199 dataset.
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easy for a conformational sampling technique to sample con-

formational changes within 36�. h angles are always predicted

within 36� for all residues in all proteins. 70% or more s angles

are predicted correctly for nearly 90% proteins. However, less

than 10% proteins have 100% correctly predicted h and s.

h and s can also be calculated from backbone torsion angles

/ and w by assuming x 5 180�. Thus, it is of interest to com-

pare the accuracy of h and s predicted in this work with those

calculated from predicted / and w. For the TS1199 dataset,

we found that the MAE values for h and s derived from / and

w predicted by SPINE X[3] are 9.6� and 37.7�, respectively.

Thus, the angles predicted in this work (MAE 5 8.6� and 33.6�,

respectively) are about 10% more accurate in h or s than those

calculated from / and w predicted by SPINE X. The largest

improvement by direct prediction of h or s as shown in Table

1 is in coil residues. The MAE for a coil residue is reduced from

13.8� to 11.4� for h and from 56.4� to 50.2� for s.

One application of predicted h and s is to utilize them for

direct construction of local structures whose accuracies can be

measured by the root-mean-square distance (RMSD) from their

corresponding native conformations. Fragment structures of a

length L are derived from predicted angles using the TS1199

dataset with a sliding window (1 to L, 2 to L 1 1, 3 to L 1 2,

and etc.). For L 5 15, a total of 229,681 fragments are con-

structed. Each fragment structure was built by using the

standard Ca-Ca distance of 3.8 Å, and predicted h and s
angles. We compared the accuracy of local structures from

predicted h and s to those from / and w predicted by

SPINE X in Figure 7a. The RMSD between a native local struc-

ture (15 residue fragment) and its corresponding local

Figure 4. Actual (a) and predicted (b) distributions in the h-s plane for the TS1199 dataset.

Table 2. The MAEs of h and s prediction for 20 amino acid residue types

along with their frequency of occurrence in the TS1199 dataset.

Amino acids Frequency Theta Tau

A 8.3 7.5 28.5

C 1.4 10.1 38.1

D 5.9 8.4 38.9

E 6.7 7.1 29.7

F 4.0 9.3 34.2

G 7.2 12.3 51.5

H 2.3 9.6 37.9

I 5.6 7.2 26.2

K 5.8 7.8 30.9

L 9.2 6.9 25.9

M 2.1 7.9 29.2

N 4.4 9.0 41.0

P 4.6 8.5 33.5

Q 3.8 7.6 30.6

R 5.1 8.0 31.2

S 5.9 10.7 40.4

T 5.6 9.9 35.6

V 7.1 7.7 27.7

W 1.5 9.2 35.3

Y 3.6 9.3 34.5

Average 8.6 33.6
Figure 5. MAEs as a function of relative solvent accessibility for the TS1199

dataset.
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structure constructed from predicted h and s angles (X-axis) is

plotted against the RMSD between a native local structure and

its corresponding structure constructed from predicted / and

w angles (Y-axis) in a density plot. The majority of RMSD val-

ues are less than 6 Å. The average RMSD values of local struc-

tures from predicted h and s are 1.9 Å for 10 mer, 3.1 Å for 15

mer, 4.3 Å for 20 mer, and 7.0 Å for 30 mer. By comparison,

the average RMSD values from predicted / and w are 2.2 Å

for 10 mer, 3.4 Å for 15 mer, 4.8 Å for 20 mer, and 7.7 Å for 30

mer. The improvement of h/s derived structures over //w
derived structures is more than 10%. More local structures

from predicted h and s angles are more accurately predicted

than those from predicted / and w angles as demonstrated

by the size of the triangle at the bottom-right corner. The

spread from the diagonal line confirms the complementary

role of these four predicted angles.

The difference (RMSD) between local structures generated

by predicted h and s angles and those by predicted / and w
angles can serve as an effective measure of how accurate a

predicted local structure is. Figure 7b shows the density plot

of the RMSD from the native (Y-axis) versus the RMSD from

the / and w-derived structure (X-axis) for 15-residue frag-

ments. There is a trend that the larger the structural difference

from different types of angles is, the less accurate the pre-

dicted local structure (larger RMSD) will be. For example, if the

RMSD between h/s derived and //w-derived local structures is

less than 2 Å, the RMSD of a h/s-derived structure from its

native structure is most likely less than 4 Å based on the most

populated region in red.

Discussion

This study developed the first machine-learning technique for

prediction of the angle between Cai21ACaiACai11 (h) and a

dihedral angle rotated about the CaiACai11 bond (s). These

angles reflect a local structure of three to four amino acid resi-

dues. By comparison, / and w angles are the property of a sin-

gle residue while secondary helical and sheet structures

involve more than three residues. Thus, direct prediction of h
and s angles is complementary to sequence-based prediction

of / and w angles and secondary structures. Predicting h and

s angles also has one advantage over / and w angles because

h has a narrow range of 0 to 180� while / and w, similar to s
are both dihedral angles ranging from 2180� to 1180�.

Indeed, by using the stacked sparse auto-encoder deep neural

network, we achieved MSE values of 9� for h and 34� for s. By

comparison, MAE is 22� for / and 33� for w by SPINE-X. As a

result, h and s calculated from predicted / and w angles are

less accurate with an MAE of 10� for h and 38� for s, 10%

higher than direct prediction of h and s.

Complementarity between predicted h/s angles and pre-

dicted //w angles is demonstrated from the accuracy of

Figure 6. Percentage of proteins with more than a fraction of correctly pre-

dicted angles (h and s angles are less than 36� from native values, respec-

tively) for the TS1199 dataset.

Figure 7. a) Consistency between 15-residue local fragment structures derived from predicted //w (X-axis) and those from predicted h/s angles (Y-axis) in

term of their RMSD (in Å) from the native structure for the TS1199 dataset. b) RMSD values between two angle-derived local structures (X-axis) are com-

pared to RMSD of a h/s-derived structure from its native structure.
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local structures constructed based on these predicted

angles. As shown in Figure 7a, some local structures are

more accurately constructed by h and s angles while others

are more accurately constructed by / and w angles. More-

over, RMSD values between h/s-derived and //w-derived

structures can be utilized as a measure for the accuracy of

a predicted local structure (Fig. 7b). Usefulness of predicted

angles for fragment structure prediction is illustrated by the

fact that the average RMSD of 15-residue fragments is only

3Å from the corresponding native fragment structures. Cur-

rently, the most successful techniques in structure prediction

(e.g. ROSETTA[31] and TASSER[32]) are based on mixing and

matching of known native structures either in whole (tem-

plate-based modelling) or in part (fragment assembly).[33,34]

Fragment structures based on predicted h and s angles pro-

vide an alternative but complementary approach to the

homolog-based approach for generating fragment structures.

In addition to fragment-based structure prediction, predicted

h and s angles can also be used directly as a constraint for

fragment-free or ab initio structure prediction[1,2] as pre-

dicted / and w angles did.[9]

How to handle the periodicity of torsion angles is an issue

facing angle prediction (2180� is same as 180�). In our previ-

ous work for predicting / and w angles, we used a simple

angle shift,[7] and prediction of peaks (two-state classification),

followed by prediction of deviation from the peaks.[9] Here, we

introduced a sine and cosine transformation of h and s angles,

a technique commonly used in signal processing and speech

recognition.[30] We have compared the sine and cosine trans-

formation with angle shifting and its combination of two-state

classification because the distributions of h and s angles also

have two peaks (Fig. 3). We found that the MAE of s is 54� by

direct prediction, 41� by angle shifting, and 36� by combining

two-peak prediction with angle shifting. Thus, a MAE of 34� by

sine and cosine transformation has the highest accuracy. We

also examined the use of arcsine or arccosine, rather than arc-

tangent. We found that using arccosine (with sine for phase

determination) yields similar prediction accuracy as using arc-

tangent but using arcsine leads to significantly worse predic-

tion. We expect that such sine and cosine transformation of /
and w angles will also likely improve over existing SPINE-X pre-

diction. For SPINE-X, MAE values are 33� for w angles and 22�

for / angles, respectively.

We also examined how much improvement in angle predic-

tion is due to the use of deep learning neural networks. We

found that when only one hidden layer (150 nodes) is utilised,

MAE values are 8.8� for h angles and 34.1� for s angles, respec-

tively. Thus, using deep 3-layer neural networks yields minor

but statistically significant improvement over simple neural

networks.

The most difficult angles to predict are the angles of coil

residues (Table 1). This is true for h and s angles as well as for

/ and w angles. Angles in coil regions have a MAE of 11� for h
and 50� for s, compared to 32� for / and 56� for w. This is

likely because coil regions are structurally least defined.

Despite of large errors, predicted / and w angles in coil

regions have been proved to significantly improve the accu-

racy of predicted structures.[9] Thus, we expect that predicted

h and s angles in coil regions will also be useful as restraints

for ab initio structure prediction[9] or template-based structure

prediction.[14]

Acknowledgments

We also gratefully acknowledge the support of the Griffith Univer-

sity eResearch Services Team and the use of the High Performance

Computing Cluster "Gowonda" to complete this research. This

research/project has also been undertaken with the aid of the

research cloud resources provided by the Queensland Cyber Infra-

structure Foundation (QCIF).

Keywords: local structure prediction � protein structure predic-

tion � secondary structure prediction � fragment structure pre-

diction � fold recognition � deep learning � neural network

How to cite this article: J. Lyons, A. Dehzangi, R. Heffernan,

A. Sharma, K. Paliwal, A. Sattar, Y. Zhou, Y. Yang J. Comput.

Chem. 2014, 35, 2040–2046. DOI: 10.1002/jcc.23718

[1] Y. Q. Zhou, Y. Duan, Y. D. Yang, E. Faraggi, H. X. Lei, Theor. Chem. Acc.

2011, 128, 3.

[2] J. T. Guo, K. Ellrott, Y. Xu, Methods Mol. Biol. 2008, 413, 3.

[3] E. Faraggi, T. Zhang, Y. Yang, L. Kurgan, Y. Zhou, J. Comput. Chem.

2011, 33, 259.

[4] B. Rost, J. Struct. Biol. 2001, 134, 204.

[5] D. Kihara, Protein Sci. 2005, 14, 1955.

[6] O. Dor, Y. Zhou, Proteins: Struct. Funct. Bioinf. 2007, 68, 76.

[7] B. Xue, O. Dor, E. Faraggi, Y. Zhou, Proteins: Struct. Funct. Bioinf. 2008,

72, 427.

[8] E. Faraggi, B. Xue, Y. Zhou, Proteins: Struct. Funct. Bioinf. 2009, 74,

847.

[9] E. Faraggi, Y. D. Yang, S. S. Zhang, Y. Zhou, Structure 2009, 17,

1515.

[10] K. T. Simons, R. Bonneau, I. Ruczinski, D. Baker, Proteins: Struct. Funct.

Genet. 1999, Suppl 3, 171.

[11] Y. M. Huang, C. Bystroff, Bioinformatics 2006, 22, 413.

[12] C. Mooney, A. Vullo, G. Pollastri, J. Comput. Biol. 2006, 13, 1489.

[13] M. J. Wood, J. D. Hirst, Proteins: Struct. Funct. Bioinf. 2005, 59, 476.

[14] Y. Yang, E. Faraggi, H. Zhao, Y. Zhou, Bioinformatics 2011, 27, 2076.

[15] R. Karchin, M. Cline, Y. Mandel-Gutfreund, K. Karplus, Proteins: Struct

Funct Bioinf 2003, 51, 504.

[16] W. Zhang, S. Liu, Y. Zhou, PLoS ONE 2008, 6, e2325.

[17] A. Korkut, W. A. Hendrickson, Proc. Natl. Acad. Sci. USA 2009, 106,

15667.

[18] Y. Zhou, M. Karplus, Proc. Natl. Acad. Sci. USA 1997, 94, 14429.

[19] D. Kihara, H. Lu, A. Kolinski, J. Skolnick, Proc. Natl. Acad. Sci. USA 2001,

98, 10125.

[20] A. Liwo, Y. He, H. A. Scheraga, Phys. Chem. Chem. Phys. 2011, 13,

16890.

[21] M. M. Flocco, S. L. Mowbray, Protein Sci. 1995, 4, 2118.

[22] G. J. Kleywegt, J. Mol. Biol. 1997, 273, 371.

[23] G. Wang, R. L. Dunbrack, Jr., Nucleic Acids Res. 2005, 33, W94.

[24] G. E. Hinton, Trends Cogn. Sci. 2007, 11, 428.

[25] Y. Bengio, Foundations and trendsVR in Machine Learning 2009, 2, 1.

[26] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, Adv. Neural Inf. Pro-

cess. Syst. 2007, 19, 153.

[27] R. B. Palm, Prediction as a Candidate for Learning Deep Hierarchical

Models of Data; Technical University of Denmark, Kongens Lyngby,

2012.

[28] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. H. Zhang, Z. Zhang, W.

Miller, D. J. Lipman, Nucleic Acids Res. 1997, 25, 3389.

FULL PAPERWWW.C-CHEM.ORG

Journal of Computational Chemistry 2014, 35, 2040–2046 2045

info:doi/10.1002/jcc.23718
http://onlinelibrary.wiley.com/


[29] J. Meiler, M. M€uller, A. Zeidler, F. Schm€aschke, J. Mol. Model. 2001, 7,

360.

[30] B. Bozkurt, L. Couvreur, T. Dutoit, Speech Commun. 2007, 49, 159.

[31] K. T. Simons, C. Kooperberg, E. Huang, D. Baker, J. Mol. Biol. 1997, 268,

209.

[32] Y. Zhang, J. Skolnick, Proc. Natl. Acad. Sci. USA 2004, 101, 7594.

[33] J. M. Bujnicki, Chembiochem 2006, 7, 19.

[34] Y. Zhang, Curr. Opin. Struct. Biol. 2009, 19, 145.

Received: 5 June 2014
Revised: 12 July 2014
Accepted: 9 August 2014
Published online on 12 September 2014

FULL PAPER WWW.C-CHEM.ORG

2046 Journal of Computational Chemistry 2014, 35, 2040–2046 WWW.CHEMISTRYVIEWS.COM


