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Abstract

The research essays the design of a motion planner that will simultaneously manage colli-
sion and obstacle avoidances of a team of nonholonomic car-like robots fixed in prescribed
formation and ensure desirable tunnel passing maneuvers. This decentralized planner,
derived from the Lyapunov-based control scheme works within a leader-follower frame-
work to generate either split/rejoin or expansion/contraction of the formation, as feasible
solutions to the tunnel passing problem. In either scenario, the prescribed formation will
be re-established after the tunnel has been passed. Moreover, avoidance of the walls of
a tunnel will be accomplished via the minimum distance technique. The results can be
viewed as a significant contribution to the intelligent vehicle systems discipline.
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1 Introduction

The concept of formation control has in recent years garnered monumental attention from
researcher all over, for both theoretical research and real-world applications. Formation con-
trol is basically to control the posture (position and orientation) of a team of agents while
normally maintaining constant their relative locations and allowing them to travel to their
desired destinations [1–5]. Formation control in difficult and constrained environments has
been favored because of the wide spectrum of formation stiffness possible (eg. split/rejoin,
low degree, rigid) and its relevancy to different real-life applications. The applications include
surveillance; transportation; reconnaissance; save and rescue; pursuit-evasion; and exploration
in either fully known or partially known environments, environments that may be very harsh,
or hazardous, or even inaccessible to humans.
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The literature harbors leader-follower, virtual structure, nearest neighbors, social potentials
and the behavior based approaches to address the problem of formation control. Although
each has its share of advantages and disadvantages, the leader- follower approach seems to
be favored because of its simplicity and scalability [2, 6–8]. Furthermore, the approach has
the ability to contain a wide range of formations with richer specifications and complexities.
Generally, when the posture of the leader-robot is known, desired postures of the follower-
robots can be achieved by appropriate control laws. However, the leader-follower approach
is widely known for its poor disturbance rejection properties [2] and the dependence placed
upon a single agent which can be crucial in atrocious and adverse conditions.

The main strength of this research lies in the emphasis placed upon the tunnel passing ma-
neuvers, a practical situation commonly seen on our roads and highways. We take this tunnel
passing problem to a higher level by considering formation control of a team of nonholo-
nomic car-like robots through a tunnel. From the authors’ viewpoint, although there are a
number of techniques that can be successfully deployed to generate feasible algorithms of the
tunnel passing problem, namely; scaling; prioritizing; caging [9]; split/rejoin [4, 16–18]; and
contraction/expansion of the teams, only the latter two can possibly maintain the prescribed
formations, at least, before and after tunnel passing. The two strategies are elegant, simple to
implement and yet meet the expectations of the researcher. For the very first time we deploy
the two techniques to solve this interesting but complicated problem within the overarching
framework of a new control scheme.

Operations within the control scheme are guided by the principles of the Direct Method of
Lyapunov, hence the control scheme is appropriately classified as a Lyapunov-based control
scheme (LBCS), an artificial potential field method [19]. The reader is referred to [19] for a
detailed account of the LbCS.

This paper is organized as follows: in Section 2 the car-like robot model is defined; in Section 3
the tunnel problem is designed and the two strategies are described; in Section 4 the attractive
and repulsive potential field functions are designed and explained; in Section 5 the acceleration
controllers are designed and stability of the robot system carried out; in Section 6 computer
simulations of interesting scenarios are carried out; and Section 7 concludes the paper and
outlines future work in the area.

2 Car-like Robot Model

Definition 1 The ith front-wheel steered car-like mobile robot is a disk with radius rV i and
is positioned at center (xi, yi). Precisely, the ith car-like robot is the set

Ai = {(z1, z2) ∈ R
2 : (z1 − xi)

2 + (z2 − yi)
2 ≤ rV i} ,

where A1 and Ai for i = 2, . . . , n are the lead robot and the follower-robots, respectively, of a
team of nonholonomic car-like robots.
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Fig. 1: Kinematic model of Ai.

With reference to Fig. 1, [xi, yi]
T

denotes the CoM of Ai, φi gives its
steering wheel’s angle with respect to
the longitudinal axis, l1 is the distance
between the center of the rear and front
axles, while l2 is the length of each axle.

The configuration of Ai is given
by qi = [xi, yi, θi]

T ∈ R
3, where

di = [xi, yi]
T ∈ R

2 is its position and
θi ∈ R its angle with respect to z1-axis.

If we let mi be the mass of the
robot, Fi the force along the axis of the
robot, Γi the torque about a vertical
axis at [xi, yi]

T and Ii the moment of
inertia of the robot, then the dynamic

model of Ai with respect to its CoM is

ẋi = υi cos θi −
l1
2

ωi sin θi , ẏi = υi sin θi +
l1
2

ωi cos θi ,

θ̇i :=
υi

l1
tan θi = ωi , υ̇i := Fi/mi = σi , ω̇i := Γi/Ii = ηi ,


 (1)

where υi and ωi are, respectively, the instantaneous translational and rotational veloci-
ties, while σi and ηi are the instantaneous translational and rotational accelerations of Ai.
In addition, we assume no slippage (i.e. ẋi sin θi − ẏi cos θi = 0) and pure rolling (i.e.
ẋi cos θi + ẏi sin θi = υi) of the wheels. These generate non-integrable constraints of the
system, constraints that are passionately denoted as the nonholonomic constraints. We note
that these constraints are already reflected in system (1). The dynamic constraints tagged to
the system will be treated in a later section.

The state of robot Ai is captured in xi = [xi, yi, θi, υi, ωi]
T ∈ R

5 and its acceleration controls in
ui = [σi, ηi]

T ∈ R
2. We collect the states of all the n robot in the vector x = [xT

1 , . . . ,xT
n ]T ∈

R
5×n and the acceleration controls in u = [uT

1 , ..., uT
n ]T ∈ R

2×n.

Next, given the clearance parameters ǫ1 and ǫ2, we enclose each Ai in a protective circular
region centered at di with radius rv =

√
(l1 + 2ǫ1)2 + (l2 + 2ǫ2)2/2 to maximize the free space

and ensure an easier construction of the potential field functions [4, 19].

3 Devising the Tunnel Passing Problem

Definition 2 Tunnel passing is a geometric problem of generating collision-free maneuvers
of agents from arbitrary initial positions through a 2D-tunnel of given geometry.
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In this research, we drive a team of robots through a 2D-tunnel of given geometry. This tunnel
passing problem can be divided into a number of sub-tasks: guiding the team in formation
to the front of the tunnel; driving the team through the tunnel; and finally re-establishing
the original formation of the team. We assume that the robots will be able to measure the
distances from the tunnel walls using sensors.

Let us treat the top tunnel wall in the z1z2-plane as a line segment with initial coordinates
(q11, r11) and final coordinates (q12, r12), while the bottom tunnel wall has initial and final
coordinates as (q21, r21) and (q22, r22), respectively. Hence, we have region tf = {0 < z1 <
q11, r21 < z2 < r11} and region tb = {q22 < z1, r22 < z2 < r12}. Therefore

Definition 3 A point z ∈ R
2 is behind the tunnel if z ∈ tb and is in front of the tunnel if

z ∈ tf . The size of the tunnel entrance is denoted by ht and it is a measure with reference to
the z2-axis.

Definition 4 hf is the spread of the prescribed formation and it is a measure of the maximum
inter-robot distance in relation to the z2-axis.

Assumption 1 The team will be required to be fixed in a prescribed formation, at least, before
and after the tunnel passing maneuver.

Remark 1 The assumption legislates a change in the formation to facilitate the passing
maneuvers through the tunnel. This will be required when the size of the tunnel entrance will
not allow the prescribed formation of the team to pass through, per se.

In this research we will deploy contraction/expansion and split/rejoin of a team to provide
feasible solutions to the tunnel passing problem. We will discuss each strategy in detail now.

3.1 Strategy I: Split/Rejoin of the Team

Definition 5 Split/rejoin strategy is where multiple agents fixed in a specific formation split
to steer past the encountering obstacle(s) and then rejoin to establish the prescribed formation.

This research evokes the split/rejoin maneuver of a team of nonholonomic car-like mobile
robots fixed in a formation in order to pass a tunnel of an arbitrary configuration. As
illustrated in Figure 2(a), when hf + ǫ > ht, the spread of the formation is greater than the
size of the tunnel entrance, within a safety of ǫ, hence requiring split/rejoin. The split/rejoin
maneuver, in the context of the tunnel passing problem, can be broken down into the following
sub-tasks:

Sub-task 1: Drive the team into the prescribed formation;

Sub-task 2: Maintain the prescribed formation;

Sub-task 3: Steer the formation to the front entrance of the tunnel;
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Sub-task 4: Activate the split maneuver of the team;

Sub-task 5: Drive the team members through the tunnel;

Sub-task 6: Activate the rejoin maneuver of the team to attain the prescribed formation within a
maximum distance d0 ∈ tb. Note d0 is measured relative to the leader position.

3A

2A
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f

h t
h
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final

1target of A
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(a) Split/Rejoin

3A

2A

1A t
h

initial

final
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(b) Contraction/Expansion

Fig. 2: Schemes for the tunnel passing problem with A1 as the leader robot.

3.2 Strategy II: Contraction/Expansion of the Team

Definition 6 Contraction/expansion strategy is where the prescribed formation of the mul-
tiple agents is allowed to resize in order to steer past the encountering obstacle(s) and then
return to the original size of the formation. Nonetheless, the prescribed shape is preserved
throughout the journey.

As illustrated in Figure 2(b), within a distance d1, there has to be a successful contraction of
the formation hf =⇒ hf∗ such that hf∗ + ǫ < ht. It means that the spread of the formation
is less than the size of the tunnel entrance, within a safety of ǫ. We will develop an algorithm
which again involves six major sub-tasks:

Sub-task 1: Drive the team into the prescribed formation;

Sub-task 2: Maintain the prescribed formation;

Sub-task 3: Steer the formation to a distance of d1 ∈ tf . Note d1 is measured relative to
the leader position;

Sub-task 4: Activate the contraction maneuver of the team to reduce the size of the forma-
tion. Rate of contraction of formation will be relative to the hf and ht measures;

Sub-task 5: Drive the team fixed in the reduced size through the tunnel;

Sub-task 6: Activate the expansion maneuver of the team to attain the original size of the
prescribed formation within a maximum distance d2 ∈ tb.
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3.3 Control Objective

The overall control objective of this paper is to design decentralized acceleration controllers,
σi and ηi, for each Ai in system (1), within the framework of LbCS, to navigate safely
through the tunnel either from a split/rejoin or a contraction/expansion maneuver of a team
in formation, within a finite period of time.

4 Artificial Potential Field Functions

In this section, we will construct attractive and repulsive potential field functions required to
tackle each sub-task tagged to the split/rejoin and the contraction/expansion strategies. For
simplicity we make the following assumption:

Assumption 2 The dimensions, the maximum speed υmax and the maximum steering angle
φmax of the n car-like robots are kept the same.

We now look into the various aspects of the two strategies and carefully consider the associated
potential field functions.

4.1 Drive the team into the prescribed formation

There are basically two phases of Sub-task 1 : (1) initiate movement of the team members, and
(2) establish the prescribed formation. We note that irrespective of the differences contained
in the two strategies, the mathematical treatment of the two parts are the same for the two
strategies. We shall consider these two parts separately.

4.1.1 Drive

To initiate movement we propose to have a target for each member of the team. Therefore,
for Ai, we define a target Ti = {(xi, yi) ∈ R

2 : (xi − ti1)
2 + (yi − ti2)

2 ≤ rt2i } with center
(ti1, ti2) and radius rti. For each Ai to be attracted to Ti and its center finally positioned at
(ti1, ti2) we utilize an attractive potential field function Uatt : R

4 → R
+ with

Uatt(x) =
n∑

i=1

HNi
(x) (2)

where

HNi
(x) =

1

2
ln(Hi + 1) (3)

and the corresponding target attractive function is of the form

Hi(x) = (xi − ti1)
2 + (yi − ti2)

2 + υ2
i + ω2

i ), for i = 1, . . . ,n. (4)

6

141



While the function is the measure of the distance between Ai and the target Ti, it can also
be treated as a measure of convergence. This invariably substantiates the first phase of
Sub-task 1.

4.1.2 Establish Prescribed Formation

To realize the second phase of Sub-task 1 we adopt the leader-follower scheme described by
Sharma et al. in [4]. The scheme was designed to navigate a flock in a constrained environment.
This elegant yet simple scheme will be instrumental in establishing the prescribed formation
of the team, for either strategy. In the scheme, see Figure 3, the follower robots follow the
lead robot via mobile ghost targets. The ith mobile ghost target is positioned relative to the
position of the lead robot.

This is a user-defined Euclidean measure of ai units right or left and bi units up or down,
while the center of the ghost target is given by (ti1, ti2) = (x1 − ai, y1 − bi), for i = 2 to n.

bi

ai

(xi, yi)

(x1, y1)

(x1 − ai, y1 − bi)

Leader A1

Ai

the Ai

Ghost Target of

Fig. 3: The mobile ghost target for Ai relative to
that of the leader.

As the lead robot A1 moves towards its
target T1, the mobile ghost targets will
move relative to the position of the lead
robot.

In turn each follower-robot of the
team moves towards a designated mobile
ghost target at every iteration t > 0,
hence establishing the prescribed for-
mation [4]. A specific and prescribed
formation can be established with appro-
priate values of the Euclidean measures
ai and bi.

Figure 4 shows the potential valleys created by the attractive forces in a continuous potential
field in relation to the moving ghost targets. The ultimate goal is for each robot to move to
its designated valley (mobile ghost target) via steepest descent of the potential gradient.

4.2 Maintain the Prescribed Formation

To realize Sub-task 2, we design specific modules that govern the prescribed formation of the
team. We note that these modules will greatly differ for the two strategies since we will want
to activate two significantly different maneuvers to engender tunnel passing.

While for Strategy I the leader-follower scheme and the attractive potentials governed by
equation (2) are sufficient to maintain the prescribed formation, the following bounds are
enacted specifically for Strategy II to maintain a continued cohesion of the robots.
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Fig. 4: Total potentials and the corresponding contour plot generated using the target attractive function
governed by equation (2). The ghost targets are fixed at (60, 24) and (27, 30).

4.2.1 Maximum Inter-robot Bound

The maximum distance between any two robots of the team needs to be bounded so that a
robot cannot drift off the prescribed formation. We thus desire a bound ‖ di − dj ‖2< M2

ij

where Mij is the maximum Euclidian distance between Ai and Aj on R
2.

The only way this bound could be treated within the LbCS framework is to develop an
artificial obstacle for it. We can choose AO1ij = {x ∈ R

2 : (xi − xj)
2 + (yi − yj)

2 ≥ M2
ij}.

To ensure that each robot of the team operates within these bounds, we need only avoid the
corresponding artificial obstacles by appropriate repulsive potential field functions. Hence,
we introduce tuning parameter ζij > 0, and adopt potential fields defined by Urep1

: R
2 → R

+

with

Urep1
(x) =

n∑
i=1

n∑
j=1
j 6=i

ζij

Rij(x)
(5)

where the obstacle avoidance function is of the form

Rij(x) =
1

2

[
M2

ij − {(xi − xj)
2 + (yi − yj)

2}
]
, for i, j ∈ {1, 2, . . . , n}, j 6= i. (6)

4.2.2 Minimum Inter-robot bound

The minimum inter-robot bounds prevent a robot from getting very close to (or colliding
with) another robot. We desire the bound ‖ di − dj ‖2> N2

ij where Nij is the minimum

Euclidian distance given as (rV + rV )2 = 4r2
V on R

2. We can choose to have an artificial
obstacle AO2ij = {x ∈ R

2 : (xi − xj)
2 + (yi − yj)

2 ≤ N2
ij = 4r2

V }. For avoidance we introduce

tuning parameter ξij > 0, and adopt repulsive potential fields defined by Urep2
: R

2 → R
+

8
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with

Urep2
(x) =

n∑
i=1

n∑
j=1
j 6=i

ξij

MOij(x)
(7)

where the obstacle avoidance function is of the form

MOij(x) =
1

2

[
(xi − xj)

2 + (yi − yj)
2 − 4r2

V

]
, for i, j ∈ {1, 2, . . . , n}, j 6= i. (8)

4.3 Drive Team to Front Entrance

In either strategy, to realize Sub-task 3 we simply ensure that the team is driven towards the
tunnel. It is easy to accept that we basically require T1 ∈ tb. As the lead robot approaches the
tunnel entrance, the follower-robots follow their mobile ghost targets and hence also approach
the front entrance.

4.4 Drive Team through the Tunnel

Sub-task 5 of either strategy addresses the ultimate goal of this research. This is to attain
the tunnel passing maneuver and to make sure that all the team members are able to safely
steer through the tunnel.

Since T1 ∈ tb the target attractive functions constructed in Section 4.3 are sufficient to drive
the team members through the tunnel. However, to garner an overall success, we need to
address an important issue inherently tagged to Sub-task 5 : obstacle and collision avoidances.
We will now address the various avoidances deemed important to this sub-task.

4.4.1 Fixed Obstacles: Tunnel Walls

We assume that the walls of the tunnel are fixed obstacles that need to be avoided in either
strategy while passing through. This also ensures containment of the motion within the walls
of the tunnel.

Definition 7 The kth tunnel wall is collapsed into a line segment in the z1z2-plane with
initial coordinates (qk1, rk1) and final coordinates (qk2, rk2). The parametric representation of
the kth tunnel wall can be given as xk = qk1 + λk(qk2 − qk1) and yk = rk1 + λk(rk2 − rk1)
where λk : R

2 → [0, 1].

We will adopt the minimum distance technique (MDT) from [19] to facilitate the avoidance
of these line segments. We calculate the minimum Euclidian distance from the center of Ai

to the kth line segment and avoid the resultant point of the line segment. From geometry,
coordinates of this point can be given as xik = qk1+λik(qk2−qk1) and yik = rk1+λik(rk2−rk1)
where λik = (xi − qk1)ck + (yi − rk1)dk,
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ck =
(qk2 − qk1)

(qk2 − qk1)2 + (rk2 − rk1)2
, dk =

(rk2 − rk1)

(qk2 − qk1)2 + (rk2 − rk1)2

and the saturation function is given by

λik(xi, yi) =




0 , if λik < 0

λik , if 0 ≤ λik ≤ 1

1 , if λik > 1

We note that λik(xi, yi) is a nonnegative scalar such that it is restricted to the interval [0, 1].
Hence, there is always an avoidance of the kth tunnel wall at every iteration t ≥ 0. For
example, λik = 0 would mean that Ai ∈ tf and the point closest to it will be (qk1, rk1) which
the robot has to avoid. Now, for each robot to avoid the closest point on each of the kth
tunnel wall we introduce tuning parameter αik > 0, for i = 1 to n and k = 1, 2, and consider
repulsive potential fields defined by Urep3

: R
2 → R

+ with

Urep3
(x) =

n∑
i=1

2∑
k=1

αik

Wik(x)
, (9)

where the associated obstacle avoidance function is of the form

Wik(x) =
1

2

{
[xi − (qk1 + λik(qk2 − qk1))]

2 + [yi − (rk1 + λik(rk2 − rk1))]
2 − r2

v

}
, (10)

4.4.2 Moving Obstacles: Car-like Mobile Robots

While the minimum inter-robot bounds designed in Section 4.2.2 govern the formation of the
team in Strategy II, they will also prevent inter-robot collisions.

We now need to address the collision avoidance issue for Strategy I. This is because once the
team members are split there is a possibility that they can collide amongst each other, that is,
each robot itself becomes a moving obstacle for all the other robots. For this we will simply
deploy the repulsive potential field function given by equation (7) in Section 4.2.2 which will
also prevent all possible inter-robot collisions.

4.5 Split/Rejoin and Contraction/Expansion Maneuver

Sub-task 4 and Sub-task 6 involve activating the split/rejoin and contraction/expansion ma-
neuvers of the team for Strategy I and Strategy II, respectively. While the lack of strong
constraints help attain split/rejoin maneuvers in Strategy I, we will require the following
updating rule to engender contraction/expansion of the formation in Strategy II:

ai(t + 1) =




− ρ1 (ai(0) − a∗i ) + ai(t) , if λ1k(x1, y1) < 0,

a∗i , if 0 ≤ λ1k(x1, y1) ≤ 1,

− ρ2 (a∗i − ai(0)) + ai(t) , if λ1k(x1, y1) > 1,

10
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and

bi(t + 1) =




− ρ1 (bi(0) − b∗i ) + bi(t) , if λ1k(x1, y1) < 0,

b∗i , if 0 ≤ λ1k(x1, y1) ≤ 1,

− ρ2 (b∗i − bi(0)) + bi(t) , if λ1k(x1, y1) > 1,

where the distance measures, ai and bi, will be iteratively updated from the attractive po-
tential field function governed by equation (4) and from the saturation function λ1k(x1, y1)
defined in Subsection 4.4. When λ1k(x1, y1) < 0, A1 ∈ tf which implies that the contraction
hf =⇒ hf∗ continues such that hf∗ + ǫ < ht. However, if A1 ∈ tb then we continue to expand
the formation, until the original size is re-established. This also establishes that the feedback
gains ρ1, ρ2 ∈ R

+ are directly dependent on distances d1 and d2. Furthermore, the critical
measures to allow tunnel passing a∗i > 2 × rV , and b∗i > 2 × rV need to be observed to avoid
saturations.

4.6 Other Requirements

4.6.1 Auxiliary Function

To ensure that the total potentials vanish when the team converges to the final target con-
figuration we design an auxiliary function defined by Uaux : R

3 → R
+ with

Uaux =
n∑

i=1

Gi(x) (11)

where

Gi(x) =
1

2

[
(xi − ti1)

2 + (yi − ti2)
2 + (θi − ti3)

2
]

, (12)

for i = 1 to n, where ti3 is the desired orientation of Ai.

4.6.2 Artificial Obstacles: Dynamics Constraints

In practice, the translational speed and the steering angle of the car-like robots are limited.
If υmax > 0 and 0 < φmax < π

2 then the constraints imposed on the translational and
the rotational velocities are, respectively, |υi| < υmax and |ωi| < υmax

|ρmin|
where ρmin =

l1/tan φmax. Again, the only way these dynamic constraints could be treated within the
LbCS framework is to develop an artificial obstacle for each. Hence we have:

AO3i1 = {υi ∈ R : υi ≤ −υmax or υi ≥ υmax},

AO3i2 = {ωi ∈ R : ωi ≤ −υmax/|ρmin| or ωi ≥ υmax/|ρmin|}.

To avoid these artificial obstacles we introduce tuning parameter βim > 0, for i = 1 to n and
m = 1, 2, and use the repulsive potential fields defined by Urep4

: R
2 → R

+ with

Urep4
=

n∑
i=1

2∑
m=1

βim

Uim(x)
(13)

11
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where the associated avoidance functions are of the form

Ui1(x) =
1

2
(υmax − υi)(υmax + υi) (14)

Ui2(x) =
1

2

(
υmax

|ρmin|
− ωi

)(
υmax

|ρmin|
+ ωi

)
(15)

5 Controller Design and Stability Issues

The total attractive and repulsive APFs for system (1) are defined by Uatt(x) and Urep(x) =
4∑

j=1

Urepj
, respectively. The resulting total force for system (1) is F (x) : R

2 → R
2 with

F (x) = − (▽Uatt(x) + Urep(x) ×▽Uaux(x) + Uaux(x) ×▽Urep(x)) (16)

The collision-free trajectories are harvested following the notion of steepest descend. We
begin with the following theorem:

Theorem 1 Consider a team of car-like mobile robots, the motion of which is governed by
ODEs described by system (1). The objective is to, amongst considering other integrated
subtasks, establish and control a prescribed formation, facilitate tunnel passing maneuvers of
the robots within a constrained environment and attain the target configuration in its origi-
nal formation. Utilizing the potential field functions the following continuous time-invariant
acceleration control laws can be generated for Ai that per se guarantees stability, in the sense
of Lyapunov, of system (1) as well:

σi = − [δi1υi + f1i cos θi + f2i sin θi] /f4i , (17)

ηi = −

[
δi2ωi +

ll
2

(f2i cos θi − f1i sin θi) + f3i

]
/f5i , (18)

for i = 1 to n where δi1, δi2 > 0 are constants commonly known as convergence parameters.

Remark 2 The generalized controls are applicable to both strategies. Strategy that does not
require a particular repulsive potential function will have a zero value of the corresponding
control parameter.

Proof:

We propose a Lyapunov function candidate for system (1):

L(x) =

n∑
i=1


HNi

(x) + Gi(x)


 n∑

j=1

j 6=i

(
ζij

Rij(x)
+

ξij

MOij(x)

)
+

2∑
k=1

αik

Wik(x)
+

2∑
m=1

βim

Uim(x)




 .

(19)
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Assumption 3 The point x∗ = (t11, t12, t13, 0, 0, . . . , tn1, tn2, tn3, 0, 0) ∈ R
5×n ∈ D(L) is an

equilibrium point of system (1).

Then one can easily verify that L is continuous and positive on the domain D, L(x∗) = 0,
x∗ ∈ D and L(x) > 0 ∀ x ∈ D, x 6= x∗. Now let us consider the first derivatives of the
Cartesian quantities of our Lyapunov function candidate L(x). Along a particular trajectory
of system (1), we have, upon collecting terms with υi and ωi separately

L̇(1)(x) =

n∑
i=1

[
(f1i cos θi + f2i sin θi + f4iσi) υi −

(
l1
2

f1i[sin θi − f2i cos θi] − f3i − f5iηi

)
ωi

]
,

where functions f1i to f5i are defined as (on suppressing x):

f11 =


 1

H1 + 1
+

2∑
k=1

α1k

W1k

+
2∑

m=1

β1m

U1m
+

n∑
j=1,j 6=i

(
ζ1j

R1j
+

ξ1j

MO1j

) (x1 − t11)

−
n∑

i=2


 1

Hi + 1
+

2∑
k=1

αik

Wik

+
2∑

m=1

βim

Uim
+

n∑
j=1,j 6=i

(
ζij

Rij
+

ξij

MOij

) (xi − ti1)

+ G1

n∑
j=1,j 6=i

(
ζ1j

R2
1j

−
ξ1j

MO2
1j

)
(x1 − xj) +

n∑
j=1,j 6=i

Gj

(
ξj1

MO2
j1

−
ζj1

R2
j1

)
(xj − x1)

− G1

2∑
k=1

α1k

W 2
1k

(x1 − (qk1 + λ1k(qk2 − qk1)))(1 − ck(qk2 − qk1))

+ G1

2∑
k=1

α1k

W 2
1k

ck(rk2 − rk1)(y1 − (rk1 + λ1k(rk2 − rk1))).

f21 =


 1

H1 + 1
+

2∑
k=1

α1k

W1k

+
2∑

m=1

β1m

U1m
+

n∑
j=1,j 6=i

(
ζ1j

R1j
+

ξ1j

MO1j

) (y1 − t12)

−

n∑
i=2


 1

Hi + 1
+

2∑
k=1

αik

Wik

+

2∑
m=1

βim

Uim
+

n∑
j=1,j 6=i

(
ζij

Rij
+

ξij

MOij

) (yi − ti2)

+ G1

n∑
j=1,j 6=i

(
ζ1j

R2
1j

−
ξ1j

MO2
1j

)
(y1 − yj) +

n∑
j=1,j 6=i

Gj

(
ξj1

MO2
j1

−
ζj1

R2
j1

)
(yj − y1)

− G1

2∑
k=1

α1k

W 2
1k

(y1 − (rk1 + λ1k(rk2 − rk1)))(1 − dk(rk2 − rk1))

+ G1

2∑
k=1

α1k

W 2
1k

dk(qk2 − qk1)(x1 − (qk1 + λ1k(qk2 − qk1))).
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For i = 2 to n

f1i =


 1

Hi + 1
+

2∑
k=1

αik

Wik

+

2∑
m=1

βim

Uim
+

n∑
j=1,j 6=i

(
ζij

Rij
+

ξij

MOij

) (xi − t11)

+ Gi

n∑
j=1,j 6=i

(
ζij

R2
ij

−
ξij

MO2
ij

)
(xi − xj) +

n∑
j=1,j 6=i

Gj

(
ξji

MO2
ji

−
ζji

R2
ji

)
(xj − xi)

− Gi

2∑
k=1

αik

W 2
ik

(xi − (qk1 + λik(qk2 − qk1)))(1 − ck(qk2 − qk1))

+ Gi

2∑
k=1

αik

W 2
ik

ck(rk2 − rk1)(yi − (rk1 + λik(rk2 − rk1))),

f2i =


 1

Hi + 1
+

2∑
k=1

αik

Wik

+
2∑

m=1

βim

Uim
+

n∑
j=1,j 6=i

(
ζij

Rij
+

ξij

MOij

) (yi − ti2)

+ Gi

n∑
j=1,j 6=i

(
ζij

R2
ij

−
ξij

MO2
ij

)
(yi − yj) +

n∑
j=1,j 6=i

Gj

(
ξji

MO2
ji

−
ζji

R2
ji

)
(yj − yi)

− Gi

2∑
k=1

αik

W 2
ik

(yi − (rk1 + λik(rk2 − rk1)))(1 − dk(rk2 − rk1))

+ Gi

2∑
k=1

αik

W 2
ik

dk(qk2 − qk1)(xi − (qk1 + λik(qk2 − qk1))).

For i = 1 to n

f3i =


 2∑

k=1

αik

Wik

+
2∑

m=1

βim

Uim
+

n∑
j=1,j 6=i

(
ζij

Rij
+

ξij

MOij

) (θi − ti3) ,

f4i =
1

Hi + 1
+ Gi

βi1

U2
i1

, f5i =
1

Hi + 1
+ Gi

βi2

U2
i2

.

Substituting the controllers given in (17) - (18) and the governing ODEs for system (1) we
obtain a semi-negative definite function

L̇(1)(x) = −
n∑

i=1

(
δi1υ

2
i + δi2ω

2
i

)
≤ 0 .

We have thus provided a working proof of the fact that d
dt

[L(x)] ≤ 0 ∀ x ∈ D.

Finally, it can easily be verified that the first partial’s of L(1)(x) is C1 which satisfies the final
property of a Lyapunov function. Hence L(x) is a feasible Lyapunov function for system (1)
and x∗ is a stable equilibrium point in the sense of Lyapunov. In our case, this practical
limitation is well within the framework of the Lyapunov-based control scheme and there is
no contradiction with Brockett’s Theorem.
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6 Computer Simulations

In this section we illustrate the effectiveness of the Lyapunov-based control scheme vis-a-vis
the continuous time-invariant control laws, by simulating two interesting scenarios. We ver-
ify numerically the stability and the convergence results obtained from the control scheme.
We present tunnel passing maneuver of a 3-robot team whereby each robot starts from an
arbitrary position as depicted in Figure 2(a) and Figure 2(b). The teams get into the pre-
scribed formations and translate to the front entrance of the tunnel. Split/rejoin and contrac-
tion/expansion maneuvers are carried out to facilitate tunnel passing. The original formations
are established within a specified period of time after passing the tunnel.

6.1 Scenario 1: Split/Rejoin

Assuming the units have been appropriately taken care of, initial conditions of the 3-robot
team, obstacles and target configurations, limitations on velocities, and values of different
parameters are given in Table 1. We witness the split/rejoin maneuver of the team in order to

Table 1: Numerical values of initial states, constraints and parameters for a simulation of Scenario 1.

Initial Conditions

Positions (x1, y1) = (5, 10), (x2, y2) = (5, 15), (x3, y3) = (5, 5).
Velocities θi = 0, υi = 0.5, ωi = 0, for i = 1 to 3.

Constraints and Parameters

Dimension of robots l1 = 1.6, l2 = 1.2.
Target for leader, centre (t11, t12) = (50, 10), and radius rt1 = 0.3.
Final orientations ti3 = 0, for i = 1 to 3.

Position of ghost targets (a2, b2) = (5,−5), (a3, b3) = (−5,−5)

Max. translational speed υmax = 5.
Min. turning radius ρmin = 0.14.
Clearance parameter ǫ1 = 0.1, ǫ2 = 0.05.

Coordinates for (q11, r11) = (20, 13), (q12, r12) = (30, 13),
tunnel boundaries (q21, r21) = (20, 7), (q22, r22) = (30, 7).

Control and Convergence Parameters

Obstacle avoidance αik = 0.001, for i =1 to 3, k = 1 to 2.

Dynamics constraints βij = 0.01 for i, j = 1 to 3, i 6= j.

Convergence δ11 = 8, δ12 = 2, δ21 = 1, δ22 = 2, δ31 = 1, δ32 = 2.

facilitate tunnel passing (see Figure 5). Note the attraction functions from the leader-follower
scheme ensures the members return to the prescribed formation within a predefined distance.
Initially the follower-robots travel backwards to coalesce into the prescribed formation.

Figures 6 to 7 show the acceleration components of the individual robots of the team. One
can clearly notice the convergence of the variables at the final state implying the effectiveness
of the nonlinear controllers.
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Fig. 5: The evolution of team trajectories to facilitate the split/rejoin maneuver for tunnel passing.
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Fig. 6: Evolution of the translational ac-
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Fig. 7: Evolution of the rotational accel-
erations of the team.

6.2 Scenario 2: Expansion/Contraction

Assuming the units have been appropriately taken care of, initial conditions of the 3-robot
team, obstacles and target configurations, limitation on velocities, and values of different
parameters are given in Table 2, however, only those that are different from Scenario 1.

The control laws were implemented to generate feasible contraction/expansion maneuvers of
the team to facilitate tunnel passing (see Figure 8). Note that while the attraction functions
in the leader-follower scheme make sure that the team members return to the prescribed
formation, the inter-robot bounds guarantee and maintain the shape of the formation although
the size of the formation is continually changed. We also see that initially the follower-robots
travel backwards to coalesce into the prescribed formation.

Figures 9 and 10 show the acceleration components of the team members. Once again we
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Table 2: Numerical values of initial states, constraints and parameters for a simulation of Scenario 2.

Constraints and Parameters

Maximum distance M12 = 8.4, M13 = 8.4, M21 = 8.4,
M23 = 10.3, M31 = 8.4, M32 = 10.3.

Minimum distance Nij = 4.9 for i, j = 1 to 3, i 6= j.

Control and Convergence Parameters

Dynamics constraints βij = 3 for i, j = 1 to 3, i 6= j.

Max. inter-robot bound ζij = 0.001 for i, j = 1 to 3, i 6= j.

Min. inter-robot bound ξij = 0.1 for i, j = 1 to 3, i 6= j.

Convergence δ11 = 10, δ12 = 2, δ21 = 1, δ22 = 2, δ31 = 1, δ32 = 2.

10 20 30 40 50
z1

2.5

5

7.5

10

12.5

15

17.5

20

z
2

Tunnel Wall 1

Tunnel Wall 2

Initial Configuration Final Configuration

A2

A3

A1

A2

A3

A1

Fig. 8: The evolution of the team trajectories to facilitate the contraction/expansion maneuver.

clearly notice the convergence of the variables at the final state implying the effectiveness of
the controllers. The velocity components share similar convergence trends.

7 Conclusions and Future Research

In this paper, the Lyapunov based control scheme provides a decentralized planning architec-
ture which stands poised to tackle the tunnel passing problem in more than one possible way
with its time invariant nonlinear controllers. The controllers enable a team of nonholonomic
robots fixed in a prescribed formation to obtain collision-free tunnel passing maneuvers by
deploying either split/rejoin or contraction/expansion of the formation. Inter alia, subtasks
such as satisfying the nonholonomic and kinodynamic constraints associated with the sys-
tem are also appropriately encompassed with the framework of the Lyapunov-based control
scheme.

Although computationally intensive, the control scheme can invariably be extended to three-
dimensional cases as well. All-in-all, the paper highlights a fairly broad conception that
reflects at least some of the autonomy of swarms in nature. The Lyapunov function extracted
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Fig. 9: Evolution of the translational accel-
erations of the team.
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Fig. 10: Evolution of the rotational acceler-
ations of the team.

from the control scheme also guaranteed stability of the system. Future work includes fine
tuning the trajectories by parameter optimization, introducing curvature to the geometry of
the tunnels and introducing non-leader strategies to the tunnel passing problem.
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