
Competitive Two-Island Cooperative Coevolution for
Real Parameter Global Optimisation

Rohitash Chandra and Kavitesh Bali
School of Computing Information and Mathematical Sciences

University of the South Pacific, Suva, Fiji.
Email: c.rohitash@gmail.com, Email: bali.kavitesh@gmail.com

Abstract—Cooperative coevolution has proven to be efficient
in solving global optimisation and real world application prob-
lems. However, it is highly sensitive to problem decomposition,
especially in the context of non-separable functions that possess
interacting decision variables. Problem decomposition has been
a challenge of cooperative coevolution. Efficient problem decom-
position strategy ensures that interacting variables are grouped
into separate subcomponents. Introduction of competition and
collaboration features have shown to be advantageous in evo-
lutionary algorithms but have not quite been fully explored in
cooperative coevolution. In this paper, a method is utilized that
enforces competition in coevolution whereby different problem
decomposition schemes are implemented as islands that compete
and collaborate with each other. The proposed framework is
tested on several global optimisation benchmark problems and
achieves promising results.

I. INTRODUCTION

Cooperative coevolution is an evolutionary computation
method which solves a problem by dividing it into smaller
subcomponents [1]. A major characteristic of this is the
ability to simplify the complexities of a problem through
decomposition [2]. Cooperative coevolution has been applied
to real parameter global optimisation problems including high
dimension problems [3], [4], [5], [6]. Cooperative coevolution
has also been used for neuro-evolution [7], [8], [9] for a wide
range of problems including time series prediction and pattern
classification [10], [2], [11].

Problem decomposition is a major issue in cooperative co-
evolution that affects its performance as inter-dependencies are
present among decision variables in non-separable problems
[12], [1]. The grouping of interacting variables into separate
subcomponents has been the challenge of cooperative coevolu-
tion. A good problem decomposition method groups variables
with inter-dependencies together [12]. A number of strategies
in the past have been used for problem decomposition where
interacting variables have been grouped heuristically [3], [4],
[5], [6].

Cooperative coevolution naturally retains diversity through
the use of sub-populations, where mating is restricted to the
sub-populations and cooperation is anticipated mainly through
collaborative fitness evaluation [1], [7]. Since selection and
recombination is restricted to a sub-population, the new so-
lution will basically not inherit features from the rest of the
subpopulations. Therefore, cooperative coevolution produces

more diverse population when compared to a standard evolu-
tionary algorithm with a single population [7]. Competition is
a major feature in biological evolution. The initial motivations
for using competition in evolutionary algorithms was presented
in a competitive coevolution method where a population called
“host” and another called “parasite” competed with each other
with different mechanisms that enabled fitness sharing, elitism
and selection [13]. In cooperative coevolution, competition has
been used for multi-objective optimisation [14] that exploited
correlation and inter-dependencies between the components of
the problem. Competition has also been used in cooperative
coevolution based multi-objective optimisation in dynamic
environments where problem decomposition method adapts
according to the change of environment rather than being static
from the beginning of the evolution [15].

In cooperative coevolution for training recurrent neural
networks, competition has been enforced through different
problem decomposition methods that decomposed the neural
network and implemented as islands [16]. Competition can
ensure that the different problem decomposition methods are
given an opportunity during the entire evolution and there
is not a problem in finding the right problem decomposition
method at a particular time according to the degree of separa-
bility [2] .

This paper applies competitive island based cooperative
coevolution [16], [17] to real parameter global optimisation
problems. We propose a two island competition model that
incorporates different problem decomposition in terms of
number and size of subcomponents. The performances of
this algorithm is measured with fixed size (uniform) problem
decomposition as well as arbitrary problem decomposition
strategies. The proposed method is applied to problems with 60
and 100 dimensions and compared to standalone cooperative
cevolution with the same problem decomposition schemes that
were used as islands.

The rest of the paper is organized as follows. In Section
II, a background of cooperative coevolution with recent ad-
vancement in tackling the issue of problem decomposition
and separability has been given. Section III provides details of
the proposed framework and its application to selected global
optimisation problems. Section IV discusses the experimental
results and Section V concludes the paper with discussion of
future works.978-1-4799-7492-4/15/$31.00 c©2015 IEEE

II. BACKGROUND: PROBLEM DECOMPOSITION IN
COOPERATIVE COEVOLUTION

Problem decomposition is considered to be a core aspect of
cooperative coevolution. The problem decomposition method
solely relies on the nature of the optimisation problem. The
original cooperative coevolution framework (CCEA) decom-
posed the problem in a way where a single sub-population
is used for each variable [1]. The sub-populations in the
cooperative coevolution framework are evolved separately and
cooperation takes place for fitness evaluation for the respective
individuals in each sub-population. The general framework for
function optimisation is given in Algorithm 1 which outlines
how the large problem is decomposed. The algorithm begins by
initialising and cooperatively evaluating each of individuals of
the respective sub-populations. After the initialisation and eval-
uation phase, the evolution proceeds. All the sub-populations
are evolved in a round-robin fashion for the depth of n
generations. A cycle is complete when all the sub-populations
have been evolved for n generations. The algorithm terminates
until the maximum number of cycles are reached or the
minimum error is satisfied. The size of a subcomponent and the
way a subcomponent is encoded is dependent on the problem.

Algorithm 1: The General Cooperative Coevolution
Framework

1) Decompose the problem into k subcomponents
2) Initialise and cooperatively evaluate each subcomponent
represented as a sub-population
while until termination do

for each Subpopulation do
for n Generations do

i) Select and build new individuals
ii) Cooperatively evaluate the new individuals
iii) Update sub-population

end for
end for

end while

In order to use cooperative coevolution for optimisation
problems that fall between total separable and fully non-
separable, it is important to group interacting variables within a
subcomponent. One of the other foremost problems researchers
try to address with cooperative coevolution is the decom-
position of main problem into subcomponents. The group-
ing of interacting variables into the separate subcomponents
could minimise interaction between subcomponents and a
large partially non-separable problem can then get tackled as
separable problem that can take full advantage of cooperative
coevolution.

In an ideal decomposition, the parameters are grouped into
subcomponents such that the inter-dependencies between vari-
ables are kept at minimum [6]. Fast evolutionary programming
in the cooperative co-evolutionary framework (FEPCC) has
been the first attempt to tackle function optimisation of up
to 1000 dimensions [18]. FEPCC used the original cooper-
ative coevolution evolutionary algorithm (CCEA) framework
by Potter and Jong [1]. The major drawback of CCEA is
that it does not have the mechanism to provide interaction
between subcomponents which is needed for non-separable

problems. Due to this, FEPCC performed poorly on non-
separable problems.

Cooperative Coevolution based Particle Swarm optimisa-
tion (CPSO) [19], unlike the original cooperative coevolution
framework [1], decomposes the problem into m s-dimensional
subcomponents where s is the number of variables in a
subcomponent. Shi et. al presented a Differential Evolution
based cooperative coevolution framework which divides the
problem into halves and each half is optimized using Differ-
ential Evolution [3]. The method was applied for large-scale
problems of only 100 dimensions. This strategy does not work
for problems of high dimension as the halved subcomponents
cannot cope with higher dimensions. Yang et. al [4] have
presented the cooperative coevolution framework that uses a
random grouping and adaptive weighting strategy with differ-
ential evolution (DECC-G) for its subcomponents. The method
groups interacting and non-interacting variables into separate
subcomponents heuristically. The framework was used for non-
separable problems of up to 1000 dimensions. Omidvar et. al.
[6] made amendments to the adapting weighting approach in
DECC-G. They argued that the random grouping approach
in DECC-G proved to capture two interacting variables in
a subcomponent with a probability which gets significantly
lower when more than two interacting variables are present in
the problem.

An extension to the CPSO has been the cooperative co-
evolution framework for particle swarm optimisation (CCPSO)
[20] which has been applied to large-scale non-separable prob-
lems using random grouping and adapting weighting present in
DECC-G [4]. CCPSO showed to perform significantly better
for large scale problems of up to 1000 dimensions than its
differential evolution counterpart in DECC-G. The authors
concluded that cooperative coevolution can be a good method
for tackling the limitations of particle swarm optimisation in
handling problems of high dimensions.

Ray and Yao presented a cooperative coevolution frame-
work using correlation based adaptive partitioning technique
(CCEA-AVP) [21]. The authors of [21] provided insights into
why CCEA in its basic form was not suitable for non-separable
problems and introduced (CCEA-AVP) to deal with those
problems. This offered the possibility to deal with problems
where separability among variables might vary in different
regions of search space. In this method, the problem is evolved
for a few generations using a single population and then the
correlation coefficients of the top 50 % of the individuals of
the population are calculated.

Chen et. al presented the cooperative coevolution with
variable interaction learning (CCVIL) [22] which divides the
optimisation problem into two stages. These are the learning
stage and the optimisation stage that execute once in sequence.
In the learning stage, all decision variables are treated indepen-
dently and cooperatively evolved from which the interacting
variables are identified using variable interaction learning and
variables are merged into groups. Authors of [22] proclaim
that CCVIL is significantly better than DECC-G and MLCC
(two state-of-the-art CC-based algorithms) and the internal
optimizer JADE. However, the effectiveness of CCVIL within
real-world application domain is still unknown [22]. Omidvar
et. al presented another approach to large scale non-separable
problems using Delta Grouping [23]. This method computes

the averaged difference of a certain variable across the entire
population which is used for identifying interacting variables.
The method is based on the idea presented by Salomon [12]
who showed that coordination rotation is one way of turning
a separable problem into an non-separable one.

Yang et. al presented a multi-level cooperative coevolution
framework (MLCC) [5] which adapts the size of the sub-
components in DECC-G in order to group interacting and
non-interacting variables. The framework starts with small
sized subcomponents and adapts to bigger subcomponents
sizes from a predefined set. MLCC showed better performance
than DECC-G for non-separable problems of up to 1000
dimensions. In a recent study, Omidvar [24] recommended
that the rule of thumb for selecting a subcomponent size is
to choose it small enough so that it is within the capacity
of the subcomponent optimizer,The fact that the capacity of
an optimizer is not always known before-hand , and finding
the optimal subcomponent size requires elaborate empirical
studies and experiments [24], a viable solution is to adapt the
subcomponent size during the optimization. He then proposed
an adaptive method, (MLSoft) [24], that uses widely-used tech-
niques in reinforcement learning to adapt the subcomponent
size during the optimization process. The experimental results
suggest that MLSoft is significantly better than the former
existing adaptive algorithm (MLCC).

III. COMPETITIVE ISLAND-BASED COOPERATIVE
COEVOLUTION - CICC

The proposed method (CICC) employs the strength of
different problem decomposition strategies that reflect on the
different degree of non-separability (interaction of variables)
[12], [2] and diversity (number of sub-populations) during
evolution [1], [7].

In this section, we propose a cooperative coevolution
method that incorporates competition and collaboration with
species that is motivated by evolution in nature. The proposed
method, namely, Competitive Island-Based Cooperative Co-
evolution - CICC, employs different problem decomposition
strategies that compete and collaborate via islands. Different
islands enable competition by comparing their solutions after
a fixed time in terms of number of fitness evaluations and
exchange the best solution between the islands. In this paper,
we focus on two island competition model that can be extended
to multiple islands later.

A. Initialisation

To anticipate competition between the two islands, both
islands begin search with the same random values in a range,
but are divided into different Problem Decomposition (PD)
strategies which defines the number of subcomponents and
the size of each respective subcomponent. The subcomponents
can be of equal dimensions and can also be of varied sized
dimensions. The subcomponents are implemented as sub-
populations.

We refer to a problem decomposition configuration as
an island in the proposed competitive two-island cooperative
coevolution method. We ensure that both islands (Island One
and Island Two) begin with the same genetic materials in
the population, but evolve them differently as defined by the

different problem decomposition methods. Initially, all the sub-
populations of Island One are initialised with random-real
number values from a range. Next, these real values (from
Island One) are copied into the sub-populations of Island Two
which has a different problem decomposition strategy.

A different problem decomposition configuration is em-
ployed for each island which is defined by the number and size
of each subcomponent. A problem decomposition configura-
tion can either have same sized or varied sized subcomponents.
The highest level of decomposition for an island would have
one subcomponent for each variable. We can only evolve
each island for complete cycles and therefore, the number of
function evaluations cannot be exactly the same for each island.
The number of function evaluation depends on the number of
sub-populations used in the island as an island with greater
number of subcomponents will cost more function evaluations
to evolve for each cycle. Different islands adapt to different
times (FEs) because the search difficulties along different
dimensions of each island are different. The islands basically
compete and collaborate with each other until it reaches the
maximum number of FEś set to 1.5e+06 or when there is no
improvement identified for 5000 FEś in the second half of the
evolutionary process as described below in section IV.

B. Competition

Algorithm 2 explains the mechanism behind the proposed
Competitive Island Based Cooperative Coevolution in detail.
In Stage 1, the sub-populations of Island One and Island
Two with their respective problem decomposition strategies
are cooperatively evaluated. Stage 2 proceeds with evolution
in an island based round-robin fashion where each island is
evolved in isolation for a predefined time. This is called island
evolution time that is given by the number of cycles that makes
the required number of function evaluations for the respective
islands. A cycle is complete when all the sub-populations have
been evolved for n number of generations in a round-robin
fashion.

Once a particular island has been evolved for the island
evolution time, the algorithm proceeds and checks if the best
solution (fitness) of that particular island is better than the
rest of the islands. Afterwards, the collaboration phase takes
place, whereby the best identified solution is copied to the
other island. In this manner, the best solution is used to
help and improve the other island compete fairly in the next
round. During the course of the Collaboration procedure, the
algorithm needs to take into account how the best identified
solution from one island will be transferred into the other
island as shown in Figure 1.

C. Collaboration

A number of factors needs to be taken into account when
making a transfer as the size and number of subcomponents
vary for each island due to their different problem decom-
position strategies. The island that contains an individual with
better solution is then injected (copied) into the other islands as
outlined in Stage 4 of Algorithm 1. The best individuals from
each of the subcomponents needs to be carefully concatenated
into an individual and transferred without losing any genotype
(subcomponents in cooperative coevolution) to phenotype (re-
current neural network) mapping.

TABLE I. PROBLEM DEFINITIONS BASED ON [25], [26], [27]

Problem Name Optimum Range Multi-modal Fully Separable Error
F1 Ellipsoid 0 [-5,5] No Yes 1E-20
F2 Shifted Sphere -450 [-100,100] No Yes 1E-10
F3 Schwefel’s Problem 1.2 0 [-5,5] No Yes 1E-20
F4 Rosenbrock 0 [-5,5] Yes No 1E-20
F5 Shifted Rosenbrock 390 [-100,100] Yes No 1E-10
F6 Rastrigin 0 [-5,5] Yes Yes 1E-20
F7 Shifted Rastrigin -330 [-5,5] Yes Yes 1E-10
F8 Shifted Griewank -180 [-600,600] Yes No 1E-10

Algorithm 2: Competitive Two-Island Cooperative Co-
evolution

Stage 1: Initialisation:
i. Cooperatively evaluate Island One
ii. Cooperatively evaluate Island Two
Stage 2: Evolution:
while FuncEval ≤ GlobalEvolutionTime do

while FuncEval ≤ Island-Evolution-Time do
foreach Sub-population at Island-One do

foreach Depth of n Generations do
Create new individuals using genetic operators
Cooperative Evaluation of Island One

end
end

end
while FuncEval ≤ Island-Evolution-Time do

foreach Sub-population at Island-Two do
foreach Depth of n Generations do

Create new individuals using genetic operators
Cooperative Evaluation of Island Two

end
end

end
Stage 3: Competition: Compare and mark the island with best fitness.
Stage 4: Collaboration: Inject the best individual from the island with
better fitness into the other island.
if ErrorIslandOne ≤ ErrorIslandTwo then

Copy Island One’s best individual into the Island Two.
end
else

Copy Island Two’s best individual into Island One.
end

end

The winner island is used to inject the best solution to
the other island. The island in which the best individual is
injected is evaluated to ensure that the injected individual has
a fitness. In order to save evaluation time, the fitness can also
be transferred along with the solution. This depends on the
way the sub-populations are implemented and the approach
taken in ensuring that the fitness value is updated at the right
position that corresponds with the individual that has been
transferred. Since each sub-population contain individuals that
have a fitness, we need to note that there will be a number of
different fitness values from the best individual in each sub-
population. We only take the best fitness value and use it to
replace the best individuals from all the sub-populations in the
other islands as shown in Figure 2. The best individuals from
one island is transferred into the other. In the reverse case, the
fitness of the last individual of Island Two is copied to each of
the best individuals of Island One. The size and number of sub-
populations can be different and therefore, only the best fitness
replace the old best fitness as it carries a stronger solution.

IV. EXPERIMENTS & RESULTS

This section shows the performance of the proposed
method on selected global optimization problems of 60 and
100 dimensions. For this paper, the eight benchmark functions

Fig. 1. Competition and Collaboration in Competitive Cooperative Coevo-
lution. The best solution competes within the rest of the solutions from same
island until the local evolution time has been reached.

Fig. 2. Individuals shown as square box is copied from Island One into Island
Two. A single best fitness from one of the individuals (shown as circles) is
copied to all the individuals in Island Two. Note that only the fitness of the
last individual is copied as this fitness is the main fitness of Island One.

have been selected considering the level of difficulty, the scope
of separability and the nature of problem, i.e. unimodal or

TABLE II. UNIFORM PROBLEM DECOMPOSITION

Problem Decomp. Dimensions Num. SP Size SP
PD1 60 4 15
PD2 60 10 6
PD3 60 15 4
PD1 100 10 10
PD2 100 4 25
PD3 100 20 5

multimodal listed by Table I.

The generalised generation gap with parent-centric
crossover evolutionary algorithm (G3-PCX) [28] is used in all
the sub-populations of cooperative coevolution. We use a pool
size of 2 parents and 2 offspring as used in [28] . A population
size of 1000 is used for all experiments as it performed better
in trial experiments and helps avoid premature convergence for
fairly higher dimensions of up to 100.

In the competitive island based cooperative coevolution,
we use different problem decomposition strategies where the
same subcomponent size for each sub-population (SP) was
used as shown in Table II. According to [24], these values that
represent low, medium and high dimensional subcomponent
sizes allow us to approximately determine the optimal sub-
component size. Next, we also test this algorithm by arbitrarily
dividing the problem dimensions into relevant subcomponents
as such in Table VI. The global optimisation functions that
were selected had features in terms of being fully-separable,
non-separable, unimodel and multi-modal as shown in Table
I. This enables us to examine if the proposed method is
suitable in a wide range of problems and we can also highlight
its limitations. The column that marks “Error” in Table I
determines one of the stopping criteria (i.e. LIMIT) before
the algorithm reaches maximum number of function evaluation
which is fixed as 1500 000. A successful run is only when the
algorithm halts with the minimum error. The other stopping
criteria is when no improvement is made for 5000 function
evaluations in the second half of the evolutionary process
which also defines an unsuccessful run. The results for 50
experimental runs with 95% confidence interval are provided
in Tables III-VIII. In each case the mean fitness value (error)
has been reported along with the success rates. Results are
presented in the following subsection.

A. Results

The first set of experiments were conducted for problems
with 60 dimensions and the results are shown in Table III.
The results show that the proposed competitive cooperative
coevolution method (PD1-PD2) have performed fairly well in
terms of number of function evaluations and success rate for
F1 - F5. The proposed approach has improved the unimodal
and fully separable problems (F1-F3) and two multi-modal and
partially separable problems (F4 and F5). Furthermore, this
approach has not been able to perform quite well for (F6-F7)
which are difficult multi-modal and non-separable problems in
terms of function evaluations. However, In both cases of F6
and F7, though they could not converge to the optimum values,
the proposed competitive method has achieved better fitness
(lower error) when compared to their stand alone counter-parts,
problem decomposition one (PD1) and problem decomposition
two (PD2). The fact that G3-PCX is local search intensive,

TABLE III. THE RESULTS THAT COMPARE CICC WITH CC FOR 60
DIMENSIONS

PD Prob. FE Error Success/50
PD1 F1 328446 ± 1248 9.33E-21 ± 1.39E-22 50
PD2 F1 204271 ± 646 9.47E-21 ± 1.17E-22 50
PD1-PD2 F1 159048 ± 375 8.04E-21 ± 3.12E-22 50
PD1 F2 196884± 1042 -450 ± 1.76E-12 50
PD2 F2 122920 ± 398 -450 ± 1.18E-12 50
PD1-PD2 F2 96456 ± 309 -450 ± 3.80E-12 50
PD1 F3 592836 ± 1221 2.58E-20 ± 2.67E-20 47
PD2 F3 342854 ± 864 4.92E-21 ± 8.80E-22 50
PD1-PD2 F3 169524 ± 1213 1.37E-21 ± 7.12E-22 50
PD1 F4 1204968 ± 2097 0.55 ± 0.38 43
PD2 F4 744621 ± 1630 0.31 ± 0.29 46
PD1-PD2 F4 323532 ± 2111 0.23 ± 0.26 47
PD1 F5 1138212 ± 2134 390.71 ± 0.42 41
PD2 F5 675513 ±1346 390.63 ± 0.40 42
PD1-PD2 F5 271716 ± 523 390.23 ± 0.26 47
PD1 F6 756300 ± 1097 134.14 ± 5.92 0
PD2 F6 750120 ± 0 197.45 ± 7.99 0
PD1-PD2 F6 750600 ± 0 105.48 ± 5.03 0
PD1 F7 750300 ± 239 -196.37 ± 6.53 0
PD2 F7 750120 ± 433 -92.36 ± 11.04 0
PD1-PD2 F7 752664 ± 1488 -216.79 ± 4.67 0
PD1 F8 562206 ± 1297 -179.99 ± 2.66E-03 17
PD2 F8 387626 ± 1787 -179.99± 1.71E-03 29
PD1-PD2 F8 584604 ± 1054 -179.99 ± 6.31E-03 30

TABLE IV. THE RESULTS THAT COMPARE CICC WITH CC FOR 100
DIMENSIONS

PD Prob. FE Error Success/50
PD1 F1 448680 ± 1097 9.58E-21 ± 8.37E-23 50
PD2 F1 362145 ± 1451 9.71E-21 ± 5.93E-23 50
PD3 F1 692280 ± 923 9.46E-21 ± 1.12E-22 50
PD1-PD2 F1 365208 ± 1438 8.81E-21 ± 2.01E-22 50
PD1-PD3 F1 392520 ± 651 7.96E-21 ± 3.77E-22 50
PD2-PD3 F1 165696 ± 386 8.20E-21 ± 3.93E-22 50
PD1 F2 272958 ± 1422 -450 ± 1.09E-12 50
PD2 F2 209500 ± 771 -450 ± 9.06E-13 50
PD3 F2 416472 ± 1571 -450 ± 1.56E-12 50
PD1-PD2 F2 212664 ± 631 -450 ± 2.12E-12 50
PD1-PD3 F2 233760 ± 721 -450 ± 3.13E-12 50
PD2-PD3 F2 101760 ± 248 -450 ± 2.76E-12 50
PD1 F3 707154 ± 341 3.20E-19 ± 4.40E-19 47
PD2 F3 454456 ± 388 5.52E-21 ± 1.08E-21 49
PD3 F3 954372 ± 205 7.14E-15 ± 8.58E-15 16
PD1-PD2 F3 414888 ± 197 4.74E-21 ± 8.44E-22 50
PD1-PD3 F3 361200 ± 221 9.48E-22 ± 6.20E-22 50
PD2-PD3 F3 200376 ± 1338 1.00E-21 ± 6.58E-22 50
PD1 F4 1500000 ± 0 17.27 ± 0.88 0
PD2 F4 1451296 ± 342 0.71 ± 0.42 9
PD3 F4 1500000 ± 0 50.18 ± 3.01 0
PD1-PD2 F4 1008720 ± 709 0.39 ± 0.33 27
PD1-PD3 F4 1481220 ± 198 10.15 ± 4.05 1
PD2-PD3 F4 986568 ± 1800 0.08 ± 0.15 23

the issue of premature convergence could be addressed by
introducing adaptive diversity mechanisms and more impor-
tantly, finding a better problem decomposition to the problem.
A better analysis of different problem decomposition strategies
has been conducted in the case of 100 dimensions.

The results for the second set of problems with 100
dimensions is shown in Table IV and Table V. We use three
different competitive setups as we employ three different prob-
lem decomposition methods for this case (PD1, PD2 and PD3).
This basically lets us gauge the performances of different
problem decomposition strategies and possibly determine the
optimal decomposition based on the generalisation in [24].

The results show the performance of the proposed compet-
itive cooperative coevolution method given by combinations:
(PD1-PD2), (PD2-PD3) and (PD1-PD3).

In general, the competition enforced by PD2-PD3 has given

TABLE V. THE RESULTS THAT COMPARE CICC WITH CC FOR 100
DIMENSIONS

PD Prob. FE Error Success/50
PD1 F5 1489320 ± 1342 409.26 ± 1.78 3
PD2 F5 1456464 ± 656 390.95 ± 0.47 6
PD3 F5 1500000 ± 0 446.33 ± 3.60 0
PD1-PD2 F5 880104 ± 1482 390.71 ± 0.42 33
PD1-PD3 F5 1304220 ± 1321 397.97 ± 2.19 13
PD2-PD3 F5 766464 ± 1211 390.08 ± 0.15 43
PD1 F6 750300 ± 0 271.68 ± 8.67 0
PD2 F6 750120 ± 0 388.98 ± 14.49 0
PD3 F6 771000 ± 1298 191.98 ± 8.11 0
PD1-PD2 F6 750600 ± 0 392.66 ± 15.13 0
PD1-PD3 F6 766080 ± 141 155.11 ± 4.94 0
PD2-PD3 F6 762408 ± 1116 158.13 ± 6.45 0
PD1 F7 750300 ± 0 -36.68 ± 13.11 0
PD2 F7 750120 ± 0 101.69 ± 18.93 0
PD3 F7 760200 ± 309 -140.38 ± 7.48 0
PD1-PD2 F7 750600 ± 231 122.03 ± 15.73 0
PD1-PD3 F7 757560 ± 133 -177.35 ± 5.34 0
PD2-PD3 F7 751776 ± 1117 -152.86 ± 7.39 0
PD1 F8 433458 ± 1876 -179.99 ± 1.59E-03 33
PD2 F8 406975 ± 767 -179.99 ± 1.56E-03 32
PD3 F8 573240 ± 1652 -179.99 ± 2.91E-03 26
PD1-PD2 F8 426168 ± 1264 -179.99 ± 1.58E-03 32
PD1-PD3 F8 438000 ± 1211 -179.97 ± 1.97E-02 30
PD2-PD3 F8 255888 ± 889 -179.99 ± 1.993E-03 44

the best performance for all the problems when compared
to the rest of the competitive combinations and standalone
problem decomposition methods (PD1, PD2, PD3). PD1-PD3
and PD1- PD2 have not made major improvements for F1-F3
problems which is different from the results given in Table
III for 60 dimensions. In comparision to the other problem
decompositions, The pair (PD2-PD3) showed promising results
when tested on the multimodal, non-separable Rosenbrock
Function, F4. Since, the 100D combination of (PD2-PD3) had
the better performance overall interms of minimum fitness and
minimum FE’s, we propose that this method performs better
for problems with higher dimensions.

In Table V, the competitive methods have generally per-
formed better for problems F5-F8 which are the more difficult
problems. This is in terms of the fitness, function evaluations
and success rate. In problems F6 and F7, PD2-PD3 has shown
better results according to the fitness of the problem. Due
to the nature of the problem, the local search-intensive G3-
PCX optimizer could not converge to the global optimum
and therefore, all the methods showed no success in general
for these problems. With a fine success rate in problem F8,
we can deduce that the problem decomposition combination
(PD2-PD3) was the optimal and that an effective decompostion
should be as such that the subcomponent size is neither too
small nor too large [24]. This is however dependent on the
performance of the subcomponent optimizer.

B. Arbitrary Problem Decomposition

As it is difficult to know what might be the effective
and accurate problem decomposition until evolution, it is
important to experiment the proposed algorithm with other
problem decomposition mechanisms such as arbitrary division
or problem decomposition. In such cases, the subcomponents
are compromised of different (non-uniform) dimension sizes.
Thus, we test the CICC with a combination of two different
arbitrary sets sizes which makes total of 100 dimensions as
presented in Table VI. It was noteworthy that the proposed
algorithm outperformed the standalone cooperative coevolution

TABLE VI. ARBITRARY PROBLEM DECOMPOSITION FOR 100
DIMENSIONS

Problem Decomp. Decomposition Strategy
PD1 [8,12,11,9,7,13,14,6,13, 7]
PD2 [10,12,8,9,8,15,7,11,9, 11]

TABLE VII. THE RESULTS THAT COMPARE CICC WITH CC FOR 100
DIMENSIONS - ARBITRARY PROBLEM DECOMPOSITION

PD Prob. FE Error Success/50
PD1 F1 156085 ± 712 9.67E-21 ± 7.91E-23 50
PD2 F1 362145 ± 1451 9.71E-21 ± 5.93E-23 50
PD1-PD2 F1 115860 ± 1719 4.81E-21 ± 7.20E-22 50
PD1 F2 22684 301 ± 301 -450 ± 1.09E-12 50
PD2 F2 22476 ± 246 -450 ± 1.07E-12 50
PD1-PD2 F2 11820 ± 1132 -450 ± 5.45E-12 50
PD1 F3 136160 ± 770 5.81E-21 ± 7.92723E-22 50
PD2 F3 140890 ± 556 5.52E-21 ± 8.15594E-22 50
PD1-PD2 F3 42060 ± 197 1.33E-21 ± 5.79E-22 50
PD1 F4 500040 ± 0 60.41 ± 4.45 0
PD2 F4 500040 ± 0 58.80 ± 1.59 0
PD1-PD2 F4 1169820 ± 1733 27.51 ± 8.83 13

TABLE VIII. THE RESULTS THAT COMPARE CICC WITH CC FOR 100
DIMENSIONS - ARBITRARY PROBLEM DECOMPOSITION

PD Prob. FE Error Success/50
PD1 F5 500040 ± 0 452.26 ± 4.75 0
PD2 F5 500040 ± 0 457.359 ± 6.72 0
PD2-PD3 F5 1207200 ± 1334 433.56 ± 8.90 5
PD1 F6 500040 ± 0 341.35 ± 12.27 0
PD2 F6 500040 ± 0 336.22 ± 12.93 0
PD1-PD2 F6 753240 ± 0 325.97 ± 10.65 0
PD1 F7 490417 ± 1987 108.86 ± 16.08 1
PD2 F7 500040 ± 0 103.94 ± 12.22 0
PD1-PD2 F7 753000 ± 0 59.22 ± 12.52 0
PD1 F8 433458 ± 1876 -179.99 ± 1.59E-03 33
PD2 F8 406975 ± 767 -179.99 ± 1.56E-03 32
PD1-PD2 F8 185280 ± 1303 -180.00 ± 1.77E-03 39

(PD1, PD2 and PD3) in most test functions.

Even with arbitrary problem decomposition, the island
based competition mechanism (PD1-PD2) scored a success
rate of 13 (F4) and 5 (F5), respectively. It outweighs the zero
success scores of standalone PD1 and PD2 and converged to
a better solution.

Despite the nil success rate for F6, the PD1-PD2 com-
bination still had the lowest (better) error recorded alongside
minimum function evaluations in comparison to PD1 and PD2.
In terms of minimum function evaluations and error rate, F7
recorded a similar performance presenting a lower error value.
The competitive combination (PD1-PD2) worked well for F8
as well. Results are presented in Tables VII and VIII.

C. Further Comparisons

To determine the feasibility of the proposed Competitive
Two Island Cooperative Coevolution (CICC), we conduct a
comparison on the selected benchmark problems from some
of the algorithms in literature that took part in the 2008
Congress on Evolutionary Computation Competition [25].
These include Multilevel Cooperative Coevolution [5] MLCC)
, Dynamic Multi-Swarm Particle Swarm Optimizer [29] (DM-
SPSO) and Self-Adaptive Differential Evolution algorithm [30]
(jDEdynNP-F).

The median, mean and the standard deviation of the func-
tion errors (f(x)-f(*x)) of 25 runs are presented with respect to

their max function evaluations of 5e+5 for 100 dimensions.
Statistical data is proposed in Table IX for a comparative
analysis.

In general, CICC has shown promising performance on
the tested set with respect the other algorithms. It achieved
significantly promising results on 3 out 4 of the functions being
compared. These include Shifted Sphere, Shifted Rosenbrock
and Shifted Griewank.

Along side the three algorithms in comparision, CICC
performed fairly well as the rest of the algorithms on Shifted
Sphere and Shifted Griewank function . Additionally, CICC
outperformed all the rest of the algorithms on the multimodal,
non-separable Shifted Rosenbrock function. JDedynNP-F and
MLCC outperformed CICC on Shifted Rastrigin function and
generally performed equally well as CICC on the rest of the
functions in terms of the selected performance metrics, such
as the median, mean, and standard deviation of the objective
function values. Due to the local search intensive property of
G3-PCX, CCIC did not quite perform well on the multimodal
yet separable Shifted Rastrin function, yet it did outperform
DMSPSO and recorded a smaller function error value for the
same. Generally, we can speculate that this Competitive Island
based Cooperative Coevolution works well with different types
of functions with dimensions of upto 100D. This motivates
a scale up separate study of CICC on large scale global
optimisation problems for upto 1000 Dimensions. We leave
this as a next future plan.

D. Discussion

Competition and collaboration are important features of
evolutionary algorithms. The results have showed that the
proposed method can be helpful for cooperative coevolution
as it is difficult to establish the right problem decomposition
strategy. Arbitrary problem decomposition and competition
during evolution has shown to be quite effective. Cooperative
coevolution enables greater diversity and helps in global search
when higher level of decomposition is present in terms of
higher number of subcomponents. This is helpful in the
beginning but can be a problem when interacting variables
are not grouped in separate subcomponents. The proposed
competitive island based cooperative coevolution ensures that
it retains diversity and global search and also deals with issue
of separability through the problem decomposition strategies
that compete and collaborate with each other. By following
the general rule of thumb described in [24], an optimal user
defined problem decomposition can be attained. Basically,
an effective subcomponent size is neither too small, nor too
large and is dependent on the performance of the optimiser.
The results have shown that different problem decomposition
strategies yield different performances and vary for different
types of problems. Therefore, it is important to have different
combinations for the two islands. This gives motivation to
implement more islands in the competition. In future, three
or more number of islands can be used in the competition.
Howsoever, the computation time in terms of transferring the
best solution also has to be taken into account. When more
islands are assigned to the CICC model for competition, the
winner island injects its solution to the rest of the islands after
a certain time, and help motivate them to compete in the next
round. With respect to the solution injection (migration) phase,

this CICC framework has been able to improve evolutionary
requirements such as diversity during evolution. The perfor-
mance of the sub-populations with a lower diversity is revived
during the migration of individuals from one island to the other.

It should be noted that the basic goal of this paper is real-
parameter global optimisation and not specifically Large scal
global optimisation. In future, we are interested in doing a
scale up study of the proposed CICC model by applying it
to higher dimensional (1000D) benchmark functions proposed
in [26] and measure the efficiency of the proposed model
by comparing it with the state of the art algorithms such as
Differential Grouping [31].

V. CONCLUSION

In this paper, a competitive island-based cooperative coevo-
lution was applied to real parameter global optimisation prob-
lems. The proposed approach employed two island competitive
methods that were defined by different problem decomposition
methods in terms of the size and number of subcomponents.

The results show that in most cases, the proposed compe-
tition cooperative coevolution method outperformed the stan-
dalone problem decomposition methods in terms of function
evaluations and success rate. The results are promising when
compared to some of the established methods from the lit-
erature. This gives motivation for further research whereby
the same ideas can be utilized in implementing more islands
with different problem decomposition methods, and can also
be extended to different evolutionary algorithms in the sub-
populations.

In future work, efficient strategies, such as adaptive prob-
lem decomposition methods can be incorporated to boost the
performance of the proposed island based competition method.
The optimisation time can be decreased with multi-threaded
implementation. This proposed framework can be applied to
real world application problems and also for combinatorial
optimisations.

ACKNOWLEDGMENT

The authors would like to thank Mr. Nabi Omidvar, a
phd candidate at RMIT, Melbourne, Australia, for providing
relevent feedback and future ideas to this proposed Competi-
tive Island based Cooperative Coevolution model.

REFERENCES

[1] M. A. Potter and K. A. De Jong, “A cooperative coevolutionary
approach to function optimization,” in Parallel problem solving from
naturePPSN III. Springer, 1994, pp. 249–257.

[2] R. Chandra, M. Frean, and M. Zhang, “On the issue of separability for
problem decomposition in cooperative neuro-evolution,” Neurocomput-
ing, vol. 87, pp. 33–40, 2012.

[3] Y.-j. Shi, H.-f. Teng, and Z.-q. Li, “Cooperative co-evolutionary dif-
ferential evolution for function optimization,” in Advances in natural
computation. Springer, 2005, pp. 1080–1088.

[4] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary optimization
using cooperative coevolution,” Information Sciences, vol. 178, no. 15,
pp. 2985–2999, 2008.

[5] ——, “Multilevel cooperative coevolution for large scale optimization,”
in Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress
on Computational Intelligence). IEEE Congress on. IEEE, 2008, pp.
1663–1670.

TABLE IX. COMPARISON BETWEEN CICC, MLCC[5], DMSPSO[29], JDEDYNNP-F[30] FOR 100D.

Algorithms

Functions Stats. MLCC [5] DMSPSO [29] jDEdynNP-F [30] CICC (PD2-PD3)

Shifted Sphere
Median 5.68e-14 0.00e+00 5.68e-14 8.15e-13
Mean 6.82e-14 0.00e+00 5.68e-14 8.25e-13
StDev 2.32e-14 0.00e+00 0.00e+00 2.93e-14

Shifted Rosenbrock
Median 1.42e+02 2.58e+02 1.13e+02 8.12e-02
Mean 1.50e+02 2.83e+02 1.15e+02 8.00e-02
StDev 5.71e+01 9.40e+02 4.47e+01 7.65e-02

Shifted Rastrigin
Median 4.55e-13 1.83e+02 5.68e-14 1.67e+02
Mean 4.34e-13 1.83e+02 5.46e-14 1.72e+02
StDev 9.21e-14 2.16e+01 1.14e-14 1.03e+01

Shifted Griewank
Median 2.84e-14 0.00e+00 2.84e-14 8.67e-14
Mean 3.41e-14 0.00e+00 2.84e-14 8.53e-14
StDev 1.16e-14 0.00e+00 0.00e+00 1.43e-14

[6] M. N. Omidvar, X. Li, Z. Yang, and X. Yao, “Cooperative co-evolution
for large scale optimization through more frequent random grouping,”
in Evolutionary Computation (CEC), 2010 IEEE Congress on. IEEE,
2010, pp. 1–8.

[7] M. A. Potter and K. A. De Jong, “Cooperative coevolution: An architec-
ture for evolving coadapted subcomponents,” Evolutionary computation,
vol. 8, no. 1, pp. 1–29, 2000.

[8] N. Garcı́a-Pedrajas and D. Ortiz-Boyer, “A cooperative constructive
method for neural networks for pattern recognition,” Pattern Recog-
nition, vol. 40, no. 1, pp. 80–98, 2007.

[9] F. Gomez and R. Miikkulainen, “Incremental evolution of complex
general behavior,” Adaptive Behavior, vol. 5, no. 3-4, pp. 317–342,
1997.

[10] F. Gomez, J. Schmidhuber, and R. Miikkulainen, “Accelerated neural
evolution through cooperatively coevolved synapses,” The Journal of
Machine Learning Research, vol. 9, pp. 937–965, 2008.

[11] R. Chandra and M. Zhang, “Cooperative coevolution of elman recurrent
neural networks for chaotic time series prediction,” Neurocomputing,
vol. 86, pp. 116–123, 2012.

[12] R. Salomon, “Re-evaluating genetic algorithm performance under co-
ordinate rotation of benchmark functions. a survey of some theoretical
and practical aspects of genetic algorithms,” BioSystems, vol. 39, no. 3,
pp. 263–278, 1996.

[13] C. D. Rosin and R. K. Belew, “New methods for competitive coevolu-
tion,” Evolutionary Computation, vol. 5, no. 1, pp. 1–29, 1997.

[14] C. K. Goh, K. C. Tan, D. Liu, and S. C. Chiam, “A competitive and
cooperative co-evolutionary approach to multi-objective particle swarm
optimization algorithm design,” European Journal of Operational Re-
search, vol. 202, no. 1, pp. 42–54, 2010.

[15] C.-K. Goh and K. Chen Tan, “A competitive-cooperative coevolution-
ary paradigm for dynamic multiobjective optimization,” Evolutionary
Computation, IEEE Transactions on, vol. 13, no. 1, pp. 103–127, 2009.

[16] R. Chandra, “Competition and collaboration in cooperative coevolution
of Elman recurrent neural networks for time-series prediction,” Neural
Networks and Learning Systems, IEEE Transactions on, p. In Press,
2015.

[17] ——, “Competitive two-island cooperative coevolution for training el-
man recurrent networks for time series prediction,” in Neural Networks
(IJCNN), 2014 International Joint Conference on. IEEE, 2014, pp.
565–572.

[18] Y. Liu, X. Yao, Q. Zhao, and T. Higuchi, “Scaling up fast evolutionary
programming with cooperative coevolution,” in Evolutionary Computa-
tion, 2001. Proceedings of the 2001 Congress on, vol. 2. IEEE, 2001,
pp. 1101–1108.

[19] F. Van den Bergh and A. P. Engelbrecht, “A cooperative approach to
particle swarm optimization,” Evolutionary Computation, IEEE Trans-
actions on, vol. 8, no. 3, pp. 225–239, 2004.

[20] X. Li and X. Yao, “Tackling high dimensional nonseparable opti-
mization problems by cooperatively coevolving particle swarms,” in
Evolutionary Computation, 2009. CEC’09. IEEE Congress on. IEEE,
2009, pp. 1546–1553.

[21] T. Ray and X. Yao, “A cooperative coevolutionary algorithm with
correlation based adaptive variable partitioning,” in Proceedings of the
Eleventh conference on Congress on Evolutionary Computation, ser.
CEC’09. Piscataway, NJ, USA: IEEE Press, 2009, pp. 983–989. [On-
line]. Available: http://portal.acm.org/citation.cfm?id=1689599.1689729

[22] W. Chen, T. Weise, Z. Yang, and K. Tang, “Large-scale global optimiza-
tion using cooperative coevolution with variable interaction learning,”
in Parallel Problem Solving from Nature, PPSN XI. Springer, 2010,
pp. 300–309.

[23] M. Omidvar, X. Li, and X. Yao, “Cooperative co-evolution with
delta grouping for large scale non-separable function optimization,” in
Evolutionary Computation (CEC), 2010 IEEE Congress on, 2010, pp.
1762 –1779.

[24] M. N. Omidvar, Y. Mei, and X. Li, “Effective decomposition of large-
scale separable continuous functions for cooperative co-evolutionary
algorithms,” in Evolutionary Computation (CEC), 2014 IEEE Congress
on. IEEE, 2014, pp. 1305–1312.

[25] K. Tang, X. Yao, P. Suganthan, C. MacNish, Y. Chen, C. Chen, and
Z. Yang, “Benchmark functions for the CEC’2008 special session
and competition on large scale global optimization,” Nature Inspired
Computation and Applications Laboratory, USTC, China, Tech. Rep.,
2007. [Online]. Available: http://nical.ustc.edu.cn/cec08ss.php

[26] X. Li, K. Tang, M. N. Omidvar, Z. Yang, K. Qin, and H. China,
“Benchmark functions for the CEC’2013 special session and
competition on large scale global optimization,” RMIT University,
Melbourne, Australia, Tech. Rep., 2013. [Online]. Available:
http://goanna.cs.rmit.edu.au/ xiaodong/cec13-lsgo

[27] F. Herrera, M. Lozano, and D. Molina, “Test suite for the special issue
of soft computing on scalability of evolutionary algorithms and other
metaheuristics for large scale continuous optimization problems,” Tech.
Rep., 2010. [Online]. Available: http://sci2s.ugr.es/eamhco/functions1-
21.pdf

[28] K. Deb, A. Anand, and D. Joshi, “A computationally efficient evolu-
tionary algorithm for real-parameter optimization,” Evolutionary com-
putation, vol. 10, no. 4, pp. 371–395, 2002.

[29] S.-Z. Zhao, J. J. Liang, P. N. Suganthan, and M. F. Tasgetiren,
“Dynamic multi-swarm particle swarm optimizer with local search for
large scale global optimization,” in Evolutionary Computation, 2008.
CEC 2008.(IEEE World Congress on Computational Intelligence). IEEE
Congress on. IEEE, 2008, pp. 3845–3852.

[30] J. Brest, A. Zamuda, B. Boskovic, M. S. Maucec, and V. Zumer, “High-
dimensional real-parameter optimization using self-adaptive differential
evolution algorithm with population size reduction,” in Evolutionary
Computation, 2008. CEC 2008.(IEEE World Congress on Computa-
tional Intelligence). IEEE Congress on. IEEE, 2008, pp. 2032–2039.

[31] M. N. Omidvar, X. Li, Y. Mei, and X. Yao, “Cooperative co-evolution
with differential grouping for large scale optimization,” Evolutionary
Computation, IEEE Transactions on, vol. 18, no. 3, pp. 378–393, 2014.

