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Abstract. A major concern in cooperative coevolution for neuro-evolution
is the appropriate problem decomposition method that takes into account
the architectural properties of the neural network. Decomposition to the
synapse and neuron level has been proposed in the past that have their
own strengths and limitations depending on the application problem. In
this paper, a new problem decomposition method that combines neuron
and synapse level is proposed for feedfoward networks and applied to
time series prediction. The results show that the proposed approach has
improved the results in selected benchmark data sets when compared to
related methods. It also has promising performance when compared to
other computational intelligence methods from the literature.

1 Introduction

Cooperative coevolution evolutionary algorithm which divides a larger problem
into smaller counterparts called sub-components are evolved in isolation and
cooperatively evaluated [1]. Cooperative neuro-evolution is a form of machine
learning that employs cooperative coevolution (CC) for training [2, 3, 4, 5].
Cooperative neuro-evolution has been seen in solving real world problems such
as pattern classification [6, 3], time series prediction [7, 8, 9, 6] and control [10].

It can be generalized that the two established problem decomposition meth-
ods for cooperative neuro-evolution are synapse level (SL) [11, 9] and neuron
level (NL) [10, 12, 6]. In SL, the network is decomposed to its lowest level of
granularity where the number of sub-components depends on the number of
weight-links in neural network. In NL problem decomposition, the number of
subcomponents consists of the total number of hidden and output neurons. In
the case of time series prediction, both NL and SL give very competitive perfor-
mance [9] while in the case of pattern classification, SL is unable to perform [6].
SL views the network training as a fully separable problem and performs well
in problems involving neural network applications where the problem contain
less inter-dependencies. It failed in the case of pattern classification as it has



difficulty to decompose the problem and therefore NL performed better as it
appeals to partially-separable problems [6].

In recent developments, the combination of NL and SL through a competitive
island cooperative coevolution method (CICC) gave better results [7, 13]. In
CICC, a problem decomposition method is seen as an island that competes with
other islands or problem decomposition methods in different phases of evolution.
The winner island at each phase injects its solution to the losing island. This
essentially means that the evolutionary processes takes advantage of features of
both problem decomposition methods.

There is potential for incorporation of different problem decomposition meth-
ods that can share its strengths to solve the problem. CICC used the different
problem decomposition features to guide its search. Another way to incorporate
them is to use architectural properties of the neural network, i.e use synapse
level in the region where more diversity in search is needed and neuron level
where decision making is required.

In this paper, we combine neuron and synapse problem decomposition to
form a hybrid problem decomposition called Neuron-Synapse Level (NSL) prob-
lem decomposition. NSL is intended for training feedforward networks that are
chaotic time series problems. NSL problem decomposition enables more subpop-
ulations than NL method and lower number than SL method. The performance
of the proposed approach is compared with standalone neuron and synapse level
[7].

The rest of the paper is organized as follows. In Section 2, the proposed
method is presented while in Section 3, experiments and results are given with
discussion. Section 4 concludes the paper with a discussion of future extensions
of the paper.

2 Neuron-Synapse Level Problem Decomposition

In cooperative coevolution, problem decomposition is based on the architec-
tural properties of the neural network. Synapse level problem decomposition
decomposes the neural network having highest number of subcomponents where
each interconnected weight becomes a subcomponent [11]. Whereas, neuron level
problem decomposition employs hidden and output neurons as reference for de-
composition and the number of subcomponents depend on them [14].

In the proposed NSL decomposition method, each subcomponent consists of
incoming and outgoing connections associated with neurons in the hidden layer.
It is similar to method to cooperative coevolutionary model for evolving artificial
neural networks (COVNET) [15] where all weight connections are treated as
incoming weights. The difference lies in the breaking down the network further
in the weights connected by hidden-output layer where the decomposition is at
synapse level.

The calculation of the actual output is the sum of all the outputs generated
as in all the methods mentioned earlier. NSL employs a single subcomponent for
each neuron that groups interacting variables (synapses) that are connected to



the hidden neuron. Therefore, each subcomponent for a layer is shown in Fig.1
and composed as follows:

1. Input-hidden layer subcomponents: comprises of all the weight connection
from input neuron ¢ to the hidden layer j and the bias. Input-hidden layer weights
are decomposed as neuron level [14]:

2. Hidden-output layer subcomponents: comprises of all weight-links from each
neuron j in the hidden layer connected to all output layer neurons k£ and the
bias . Hidden-output layer weights are decomposed as synapse level [11].

The total number of sub-components is equal to total number of hidden
neurons plus the number of weights and biases within hidden and output neuron
in the neural network. The sub-components are implemented as sub-populations.

The proposed method is used in training feedforward network and is shown
in Algorithm 1. In Step 1, the problem is broken down in the number of sub-
components based on the decomposition technique used. In Step 2, the encoding
of the problem takes place based on the number of neurons in the hidden layer.

Once the network has been encoded, the algorithm executes Step 3 where
evolution take place using genetic operators for each sub-population. The sub-
populations are evolved using genetic operators as defined by the evolutionary
algorithm selected. Evaluation of the fitness of each individual for a particular
sub-population is done cooperatively with the fittest individuals from the other
sub-populations [1].

Cooperative evaluation for an individual in a particular sub-population is
done by concatenating the fittest individuals from the rest of the sub-populations.
All the sub-populations are evolved for a fixed number of generations. Once the
network has been evolved according to the maximum fitness evaluations speci-
fied, the generalisation performance is tested.

It was observed for Enforced Sub-population (ESP) [16] that during training,
too many or too few hidden units can seriously affect learning and generaliza-

Algorithm 1: NSL for Training Feedforward Networks

Step 1: Decompose the problem into subcomponents according to NSL.
Step 2: Encode each subcomponent in a sub-population according to hidden
layer.

Step 3: Initialise and cooperatively evaluate each sub-population.

foreach Clycle until termination do

foreach Sub-population do

foreach Depth of n Generations do
Select and create new offspring using genetic operators

Cooperative Evaluation the new offspring
Add new offspring’s to the sub-population
end

end
end
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Fig. 1. Neuron-Synapse Level Problem Decomposition (NSL) breaks down the neural
network into specific regions and encodes it into the respective sub-populations.

tion. In synapse and neuron level problem decomposition methods, the number
of hidden neurons defined the number of sub-populations which affects diversity.
Synapse level enabled the most diversity but falls short in applications where the
problem is not separable and contain inter-dependencies which affects the train-
ing of the weights as separable problem. In the proposed method, the number of
sub-populations would be increased when compared to neuron level and hence
more diversity is given while the network problem is approached as separable
(synapse level) and non-separable (neuron level) training problem [6].

3 Experiments, Results and Discussion

This section reports on the results and discussions based on the experiments
conducted on chaotic time series problems using the proposed neuron-synapse
level (NSL) problem decomposition method for cooperative neuro-evolution of
feedforward networks. Neuron level (NL) and synapse level (SL) problem decom-
position methods from the literature have been used for comparison [9].

3.1 Experimental Setup

We used five different time series data sets to train and test the proposed method.
Taken’s embedding theorem [17] is used to reconstruct the data set before data
sets as done previously [9, 7, 18].

Mackey Glass time series [19] is simulated data set [19]. The phase space of
this original time series is reconstructed with the embedding dimension D = 3
and T = 2. The time series is scaled in the range [0,1]. The Lorenz time series
[20] which is also simulated data set was used. was scaled in the range of [-
1,1]. The phase space of this time series is reconstructed with the embedding
dimension D =3 and T' = 2.

The Sunspot time series [21] is a real world problem that was scaled in
the range [-1,1]. The phase space of this time series is reconstructed with the
embedding dimension D =5 and T = 2.



The Seagate Technology PLC [22] financial time series data set is composed
of daily closing stock prices from December 2006 to February 2010. The phase
space of this time series is reconstructed with the embedding dimension D = 5
and T = 2 and scaled in the range [0,1]. The ACI Worldwide Inc. [22] is also a
financial time series dataset composed with daily closing stock prices. The phase
space of this time series is reconstructed with the embedding dimension D = 5
and T = 2. The time series is being scaled in the range [0,1]. All the time series
is scaled to give an accurate and fair comparison with literature.

The feedforward neural network employs sigmoid units in the hidden layer
for the Mackey Glass, Seagate and ACI Worldwide Inc time series. For Lorenz
and Sunspot time series, the hyperbolic tangent unit is used. The Root Mean
Squared Error (RMSE) and Normalised Mean Squared Error (NMSE) are used
to measure the prediction performance of the proposed method as done in [7, 9].

The maximum number of function evaluations used was 50 000 with 50 in-
dependent experimental runs. The G3-PCX algorithm uses the generation gap
model [23] for selection in which a pool size of 2 parents and 2 offspring is placed
as seen in literature [7, 9]. As for the population size, 300 was taken from the
literature in order to provide a fair comparison [7].

3.2 Results

In Tables 1 - 5, the results are shown for different number of hidden neurons
using the NSL, NL and SL method. The results of NSL is compared with the
results of standalone cooperative coevolution methods.

The results in the Tables 1 - 5 are based on 95 percent confidence interval on
RMSE and shows the best run from different numbers of hidden neurons based
on different methods. The Training shows the train average with train error sum
while Generalisation is based on test average with test error sum and lastly Best
shows the best test rmse. The best results for each method are highlighted in
bold.

In Table 1, the Mackey-Glass time series problem is being evaluated. It was
seen that NSL has performed much better than synapse method. The method
recorded better generalization performance and best training value with seven
hidden neurons. The NSL method was unable to outperform NL method.

In Table 2, the Lorenz time series problem is being evaluated. It also shows
that the NSL has performed much better than the SL and gave competitive
result with NL. It has been also observed that the generalisation performance of
the NSL and the other two methods deteriorates as the number of the hidden
neuron increases due to over fitting. The best result was seen for three hidden
neuron for NSL.

In Table 3, the sunspot time series problem is being evaluated. The time
series is real time series where noise is present. In this time series, the NSL
method outperforms one of the standalone methods. The 5 hidden neurons have
given best result for NSL whereas 3 hidden neurons for the other two methods.

In Table 4, the ACI time series problem is being evaluated. The time series is
real time series where noise is present as in sunspot time series. Even for this time



Table 1. The prediction training and generalisation performance (RMSE) of NL, SL
and NSL for the Mackey-Glass time series

Prob. H Training Generalisation Best
FNN-NL 3 0.0107 £+ 0.00131 0.0107 £+ 0.00131 0.005
5 0.0089 + 0.00097 0.0088 4+ 0.00097 0.0038
7 0.0078 + 0.00079 0.0078 + 0.00079 0.0040
FNN-SL 3 0.0237 £+ 0.0023 0.0237 £+ 0.0023 0.0125
0.0195 + 0.0012 0.0195 + 0.0012 0.0124
0.0177 4+ 0.0009 0.0178 £+ 0.0009 0.0121
FNN-NSL 3 0.0119 £+ 0.00089 0.0119 &£ 0.00090 0.0049
0.0107 £+ 0.00081 0.0107 £+ 0.00081  0.0056
0.0100 + 0.00055 0.0100 + 0.00055 0.0066
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Table 2. The prediction training and generalisation performance (RMSE) of NL, SL
and NSL for the Lorenz time series

0.0523 £ 0.00978  0.0547 £ 0.00999 0.0099
0.0459 £ 0.0090 0.0494 £ 0.00923 0.0032

Prob. H Training Generalisation Best
FNN-NL 3 0.0170 + 0.0031 0.0176 + 0.0031 0.0043
5 0.0249 + 0.0062 0.0271 4+ 0.0067 0.0021
7 0.0379 4+ 0.0093 0.0416 4+ 0.0092 0.0024
FNN-SL 3 0.0680 £ 0.0325 0.0452 + 0.0229 0.0153
5 0.0526 £ 0.0084 0.0546 4+ 0.0084 0.0082
7 0.0574 £ 0.0075 0.0605 + 0.0074 0.0079
FNN-NSL 3 0.0350 + 0.00914 0.0357 + 0.0093 0.0023
5
7

Table 3. The prediction training and generalisation performance (RMSE) of NL, SL
and NSL for the Sunspot time series

0.0356 + 0.0074 0.0842 + 0.0098 0.022
0.0396 £ 0.0080 0.0940 +£ 0.00987 0.019

Prob. H Training Generalisation Best
FNN-NL 3 0.0207 + 0.0035 0.0538 + 0.0091 0.015
5 0.0289 &+ 0.0039 0.0645 £ 0.0093 0.017
7 0.0353 4+ 0.0048 0.0676 + 0.0086 0.021
FNN-SL 3 0.5391 + 0.0261 0.4998 + 0.0238 0.210
5 0.5601 £ 0.0208 0.5210 £ 0.0177 0.302
7 0.5682 £+ 0.0178 0.5250 £+ 0.0132 0.344
FNN-NSL 3 0.0403 &£ 0.0088 0.0953 £ 0.01443 0.013
5
7

Table 4. The prediction training and generalisation performance (RMSE) of NL, SL
and NSL for the ACI Worldwide Inc. time series

Prob. H Training Generalisation Best

FNN-NL 3 0.0214 £ 0.00039 0.0215 £ 0.00039  0.020

5 0.0203 £ 0.00047 0.0212 £ 0.00041 0.019

7 0.0201 £ 0.00038 0.0208 + 0.00033 0.019
FNN-SL 3 0.4666 £+ 0.0399 0.4112 £ 0.0362 0.080
0.4135 + 0.0388 0.3902 £ 0.0378 0.042
0.4491 £+ 0.0279 0.4244 £+ 0.0270 0.134
FNN-NSL 3 0.0224 4+ 0.00113 0.0197 £ 0.00119  0.015
0.0215 £ 0.000364 0.0185 £ 0.00092 0.015
0.0209 + 0.000364 0.0192 + 0.0010 0.015
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Table 5. The prediction training and generalisation performance (RMSE) of NL, SL
and NSL for the Seagate time series

0.01862 + 0.00029 0.2562 £+ 0.04221 0.028
0.01896 + 0.00027 0.3059 £ 0.04504 0.035

Prob. H Training Generalisation Best
FNN-NL 3 0.02530 + 0.05582 0.1809 + 0.03548 0.032
5 0.02313 + 0.07403 0.2261 4+ 0.04811 0.031
7 0.02189 + 0.08061 0.2408 + 0.05306 0.053
FNN-SL 3 0.4129 4+ 0.03401 0.3492 + 0.02977 0.089
5 0.3820 + 0.03381 0.3727 + 0.03371 0.088
7 0.3816 £ 0.04425 0.4183 4 0.04306 0.094
FNN-NSL 3 0.02187 £ 0.00078 0.1988 + 0.04394 0.025
5
7




series, the NSL has performed much better than the SL and gave competitive
result with NL. Five hidden neurons have given the best result for NSL similar
to Lorenz time series problem.

In Table 5, the Seagate time series problem is being evaluated. The time series
is real time series where noise is present as in sunspot and ACI time series. For
this time series, the NSL method outperforms the other two methods. The 3
hidden neurons have given best result for NSL.

Tables 6 - 10, compares the best results from Table 1 - 5 with some of the
related methods in literature. The RMSE best run together with NMSE are used
for the comparison. The proposed NSL method has given better performance
when compared to some of the methods in the literature.

Table 6. A comparison with the results from literature on the Mackey time series

Prediction Method RMSE NMSE
AMCC-RNN [8] 7.53E-03 3.90E-04
Locally linear neuro-fuzzy model (2006) [24] 9.61E-04
SL-CCRNN [9] 6.33E-03 2.79E-04
NL-CCRNN [9] 8.28E-03 4.77E-04
CICC-RNN [7] 3.99E-03 1.11E-04
Proposed FNN-NSL 4.86E-03 4.48E-05

Table 7. A comparison with the results from literature on the Lorenz time series

Prediction Method RMSE NMSE

RBF with orthogonal least squares (2006) [24] 1.41E-09
Locally linear neuro-fuzzy model (2006) [24] 9.80E-10
SL-CCRNN [9] 6.36E-03 7.72E-04
NL-CCRNN [9] 8.20E-03 1.28E-03
CICC-RNN [7] 3.55E-03 2.41E-04
Proposed FNN-NSL 2.34E-03 2.87E-05

Table 8. A comparison with the results from literature on the Sunspot time series

Prediction Method RMSE NMSE

RBF with orthogonal least squares (2006) [24] 4.60E-02
Locally linear neuro-fuzzy model (2006) [24] 3.20E-02
SL-CCRNN [9] 1.66E-02 1.47E-03
NL-CCRNN [9] 2.60E-02 3.62E-03
CICC-RNN [7] 1.57E-02 1.31E-03
Proposed FNN-NSL 1.33E-02 5.38E-04

Table 9. A comparison with the results from literature on the ACI time series

Prediction Method RMSE NMSE

CICC-RNN [7] T.92E-02
FNN-SL [18] 1.92E-02
FNN-NL (18] 1.91E-02

MO-CCFNN-T=2 [25] 1.94E-02
MO-CCFNN-T=3 [25] 1.470E-02
Proposed FNN-NSL 1.51E-02 1.24E-03

Table 10. A comparison with the results from literature on the Seagate time series

Prediction Method RMSE NMSE
FNN-SL [18] 3.74E-02
FNN-NL [18] 2.24E-02
Proposed FNN-NSL 2.45E-02 3.56E-03




In Table 6, the best result of Mackey-Glass time series problem is being
compared. The proposed method outperformed all the methods except CICC-
RNN result. Due to competition and collaboration, the method used in CICC-
RNN has performed better than the proposed method.

The Table 7 below shows the best result on Lorenz time series problem that
is being compared to other computational intelligence methods in the literature.
The proposed method outperformed all the methods in terms of the RMSE
but was unable to outperform NMSE of two methods, RBF-OLS and LLNF-
LoLiMot. These methods have additional enhancements such as the optimization
of the embedding dimensions and strength of architectural properties of hybrid
neural networks with residual analysis [24].

In Table 8, the best result of the Sunspot time series problem is compared
with results in the literature where the proposed method has shown to outper-
form the rest of the methods.

In Table 9, the best result of the ACI time series problem is being compared
with results in the literature. The proposed method could not outperform multi-
objective method having T=3, however, the results are better when compared
to other methods from the literature.

In Table 10, the best result of the Seagate time series problem is compared
with results in the literature. The proposed method has been not able to out-
perform NL method.

3.3 Discussion

The results obtained were very promising when compared to other methods from
literature involving five different data sets. The proposed method (NSL) has
given better performances in nearly all benchmark data sets and financial data
set used. It is being compared to similar evolutionary methods namely training
neural fuzzy networks [24] and competitive cooperative coevolution methods [7].
It creates lower number of subcomponents for the problem when compared to
synapse level (SL) and higher number of subcomponents when compared to neu-
ron level (NL). The increase in the number of sub-populations when compared
to NL seems to provide more diversity in cooperative coevolution and improve
the prediction performance.

NSL incorporates two problem decomposition (NL and SL) to use architec-
tural properties of the neural network, where NL appeals to partially-separable
problems where decision making is required and SL views the network training
as a fully separable problem and is applied to region where more diversity in
search is needed. Therefore, NSL performs better than other methods.

4 Conclusions

In this paper, neuron-synapse level problem decomposition method has been
proposed for feedforward networks with application to time series prediction. The
proposed method uses the strength of both the problem decomposition methods.



It fulfills the limitations faced by a single problem decomposition method. It can
be further enhanced by involving competition in it as done in competitive island
cooperative coevolution method where different problem decomposition methods
compete and collaborate during evolution.

The method has given promising performance on the different benchmark
problems and has outperformed several methods from the literature. The method
performs better for real work time series problems when compared to simulated
ones. This is an advantage as real work time series problems contains noise that
makes prediction models difficult to train and generalise.

In future work, the proposed method can be extended to feedforward and
recurrent neural networks for pattern classification problems.
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