
Multi-Objective Cooperative Neuro-Evolution of
Recurrent Neural Networks for Time Series

Prediction

Rohitash Chandra
School of Computing Information and Mathematical Sciences

University of the South Pacific, Suva, Fiji.
Email: c.rohitash@gmail.com

Abstract—Cooperative coevolution is an evolutionary
computation method which solves a problem by decomposing
it into smaller subcomponents. Multi-objective optimization
deals with conflicting objectives and produces multiple optimal
solutions instead of a single global optimal solution. In previous
work, a multi-objective cooperative co-evolutionary method was
introduced for training feedforward neural networks on time
series problems. In this paper, the same method is used for
training recurrent neural networks. The proposed approach is
tested on time series problems in which the different time-lags
represent the different objectives. Multiple pre-processed datasets
distinguished by their time-lags are used for training and testing.
This results in the discovery of a single neural network that can
correctly give predictions for data pre-processed using different
time-lags. The method is tested on several benchmark time
series problems on which it gives a competitive performance in
comparison to the methods in the literature.

I. INTRODUCTION

Multi-objective optimization involves multiple functions
that have conflicting objectives [1]. Unlike a single-objective
problem, in which the aim is to find a global optimal solution, a
multi-objective problem gives rise to a set of optimal solutions
(known as pareto optimal) in which no solution can claim to be
better than any other with respect to all the objective functions
[1]. Any single objective component of a solution within the
Pareto optimal set can only be improved by degrading at least
one of its other objective components [2].

Cooperative coevolution is an evolutionary computation
method that solves a problem by dividing it into smaller
subcomponents [3]. Cooperative coevolution has shown to give
a more diverse set of solutions in comparison to other single-
population based evolutionary algorithms [4] and has been
successfully used for training neural networks for main stream
problems, such as pattern classification [5] and time series
prediction [6].

Multi-objective cooperative coevolution has also been ex-
plored recently. Iorio and Li developed non-dominated sort-
ing cooperative coevolutionary genetic algorithm (NSCCGA)
which was able to compare well with NSGA-II [1] on some
of the benchmark functions. The authors of [7] explored
multi-objective cooperative coevolution using a special niching

mechanism and an extending operator to maintain diversity.
Their method displayed appealing results in finding more
evenly distributed non-dominated solutions. Multi-objective
cooperative coevolution has also been used for large scale
optimization [8].

Time series prediction involves the use of past and present
data in order to make future predictions [9] [10]. A way
to improve time series prediction is to explore the different
features of the time series data and to choose optimal values
for the associated variables that are used for preprocessing
such as the values for the time lag and embedding dimension
[11]. Time lag is one of the most important features of time
series prediction. It defines the interval at which data points are
picked in order to reconstruct the time series data [12]. In this
paper, the data sets reconstructed used different time lags as the
set of objectives to be optimized. The proposed multi-objective
approach aims to optimize and generalize candidate recurrent
neural networks across multiple time lags. This method has
shown good results with feedforward neural networks [11].

Multi-objective time series prediction using computational
intelligence methods have been used to improve the prediction
accuracy [13]. Multi-objective evolutionary algorithms have
been used to optimize radial-basis networks for time series
prediction which incorporated heuristics that were able to de-
tect and remove networks which did not contribute much to the
net output while preserving those that produced good results
[14]. The use of multi-objective evolutionary neural networks
for time series prediction employed training and validation
accuracy as the two different objectives [13]. Multiple error
measures have also been used as different objectives in training
evolutionary neural networks with multi-objective optimization
[15].

The main contribution of this paper is to introduce a multi-
objective cooperative coevolutionary framework for training
recurrent neural networks for time series prediction. The aim is
to observe if multi-objective optimization using datasets with
different time lags can help improve time series prediction.
This paper extends previous work [11] where a bi-objective
method was proposed for training feedforward neural networks
(MOCCFNN) on time series problems.

The rest of the paper is organised as follows. Background
information on the related concepts is given in Section 2.
The proposed method is discussed in Section 3 while Section978-1-4799-7492-4/15/$31.00 c©2015 IEEE

4 presents the experimental results. Section 5 concludes the
paper with a summary of the results and discussion on future
research.

II. BACKGROUND

A. Problem Decomposition for Neuro-Evolution

Problem decomposition is a major issue in cooperative
coevolution as interdependencies are present among variables
[5]. Cooperative coevolution works best for separable problems
[3]. A good problem decomposition method groups variables
with interdependencies together [16]. In using cooperative
coevolution for training neural networks, the problem decom-
position method will determine the breakdown of the neural
network into subcomponents. The two main problem decom-
position methods for neural networks are Synapse level (SL)
[17] and Neuron level (NL) [18] decomposition. In SL, the
number of weights determine the number of subcomponents
whereas in NL, the number of subcomponents is equal to the
number of hidden neurons, plus the number of context neurons,
plus the number of output neurons. Neuron level problem
decomposition has shown good results in time series [6] and
pattern classification problems [5].

B. Time Series Prediction

Time series data has to be preprocessed according to a set
of parameters before it could be used for training and testing.
Taken’s theorem was used for reconstructing the original time
series into a phase space that was used by prediction models
for training [12]. The time lag defined the interval at which the
data points were picked and the embedding dimension specified
the size of the sliding window that was used to capture points
to make a reconstructed phase space [12]. These two variables
were crucial as they determined the extent to which the pattern
and features of the original time series was retained.

Some research has been done on the importance of time
lags in time series prediction. Quantum-inspired hybrid meth-
ods have been explored in order to determine the best possible
time-lag to represent the original time series, with good results
on financial prediction [19]. A hybrid model that combined
neural networks with a modified genetic algorithm was pro-
posed to perform an evolutionary search for the minimum
necessary time-lags for determining the phase space that
generates the time series [20]. A meta-evolutionary algorithm
simultaneously evolved both the neural networks and the set
of lags needed to predict the time series [21]. A morphological
rank linear time-lag added evolutionary forecasting method
was also proposed that carries out an evolutionary search for
the lowest number of relevant time-lags necessary to efficiently
represent the patterns and characteristics of a complex time
series [22].

Time series data needs to be preprocessed and recon-
structed into a state space vector [12]. Given an observed time
series x(t), an embedded phase space Y (t) = [(x(t), x(t −
T), ..., x(t(D − 1)T)] can be generated, where, T is the time
delay, D is the embedding dimension, t = 0, 1, 2, ..., N −
DT − 1 and N is the length of the original time series [12].
Taken’s theorem expresses that the vector series reproduces
many important characteristics of the original time series.

C. Recurrent Neural Networks

A recurrent neural network has feedback loops from its
outputs to its inputs which greatly improves its learning
capability [23]. It is composed of an input layer, a context
layer, hidden layers and an output layer, each of which consist
of one or more neurons [6]. The context layer is used to
preserve state information. Recurrent neural networks have
been successfully applied to a wide range of problems such as
time series prediction [6] and grammatical inference problems
[18]. The dynamics of the change of hidden state neuron
activation’s in Elman style recurrent networks is given by the
Equation (1) as shown in Figure 1.

yi(t) = f

 K∑
k=1

vik yk(t− 1) +

J∑
j=1

wij xj(t− 1)

 (1)

where yk(t) and xj(t) represent the output of the context state
neuron and input neurons respectively. vik and wij represent
their corresponding weights. f(.) is a sigmoid transfer func-
tion.

Fig. 1. Elman recurrent neural network used for time series prediction.
Although two neurons are showing an input layer, note that only one neuron
is used in the input and output layer for the time series prediction problems.
The number of hidden neurons vary as per application. The network unfolds
in time according to the size of the dimension (D).

D. Cooperative Neuro-Evolution for Time Series Prediction

Initial work on the use of cooperative coevolution for
recurrent neural networks on time series prediction focused
on the effects of different problem decomposition methods and
showed better performance than some of the established meth-
ods from the literature [6]. An adaptive modularity cooperative
coevolution (AMCC) framework for training recurrent neural
networks was proposed [24] and applied later for time series
prediction [25]. The method utilized three different problem
decomposition methods that adapted or changed amongst each
other during evolutionary process. AMCC gave competitive
results in comparison to the methods in the literature when
tested on benchmark problems. An application to financial time
series prediction was done using cooperative coevolution of
feedforward networks [26]. The method achieved good results
on real world datasets from the NASDAQ stock exchange. A
competitive cooperative coevolutionary method was proposed

for training recurrent networks on time series problems [27],
[28]. This method showed considerable improvement in com-
parison to standalone cooperative coevolution.

Multi-objective evolutionary algorithms have been used
to optimize radial-basis networks for time series prediction
[14]. The use of multi-objective evolutionary neural networks
for time series prediction employed training and validation
accuracy as the two different objectives [13]. Multiple error
measures have also been used as the different objectives in
training evolutionary neural networks with multi-objective op-
timization [15]. Hybrid fuzzy model has been proposed for pre-
dicting non-linear time series data in which their two objectives
were to improve prediction accuracy and minimize the number
of required fuzzy rules [29]. A knee-point strategy multi-
objective approach has shown promising results for evolving
feedforward neural networks when compared to established
multi-objective evolutionary algorithms [30]. Hybrid multi-
objective evolutionary method has been used for evolution of
recurrent neural network weights and structure with ensembles
where a set of Pareto solutions are obtained [31] and has shown
promising results.

III. MULTI-OBJECTIVE COOPERATIVE
NEURO-EVOLUTION

Alg. 1 Multi-Objective Cooperative Neuro-Evolution
Step 1: Decompose the problem into k subcomponents using
Neuron level decomposition
Step 2: Initialize and cooperatively evaluate each sub-population
for each objective
Step 3: Rank the sub-population and assign pareto front
for each cycle until termination do

for each Sub-population do
for n Generations do

i) Select and create new offspring using Parent-Centric
Crossover
ii) Cooperatively evaluate the new offspring for each
objective
iii) Update sub-population with the best individuals
iv) Rank the sub-population and identify non-dominated
individuals
v) Assign Pareto Front

end for
end for

end for

As mentioned in the previous section, cooperative coevo-
lution has shown good results with training neural networks
on time series problems. However, there is still room for
improvement in terms of quality and accuracy of results.
A multi-objective approach can help improve results further.
The datasets with different time lags are used as different
objectives to be optimized. Different time-lag values reproduce
the original time series in different ways, which in effect means
dealing with different datasets. Training with different time-
lags can allow the neural network to generalize better and
explore different aspects and patterns within the time series.
Noise within the dataset is also a major issue and the time-lag
determines how much of noise to be present.

In traditional cooperative coevolution, the fitness of an
individual in a particular sub-population is computed by con-
catenating it with the best individuals from the rest of the

sub-populations. The complete solution is then evaluated and
a fitness value is assigned to the individual whose fitness
was being evaluated. This despite the fact that the particular
individual only formed part of the complete solution [3].

The given multi-objective method builds on this particular
framework. In Algorithm 1, the recurrent neural network is
decomposed using neuron level decomposition method into k
subcomponents where k is equal to the sum of the number
of hidden neurons, plus the number of context neurons, plus
the number of output neurons [18]. Each sub-population is ran-
domly initialized and the individuals within the sub-population
are evaluated for fitness. Each individual is evaluated for two
given objectives which are represented by the different time-
lags.

In a multi-objective environment, there are multiple optimal
solutions in which no solution can claim to be better than
any other with respect to all the objective functions [1]. For
this reason, during fitness evaluation, the representative of
each sub-population is chosen randomly from the set of non-
dominated individuals for that particular sub-population. The
fitness of an individual in a particular sub-population is com-
puted by combining it with randomly chosen non-dominated
individuals from the rest of the sub-populations to form a
complete solution. The complete solution is then encoded into
a neural network and evaluated on the given objectives. The
resulting network error is assigned as the fitness of the individ-
ual which was being evaluated, even though it is just a small
component of the overall solution. During the initialization
phase, when the non-dominated individuals are unknown, an
individual is evaluated by selecting and concatenating random
individuals from the other sub-populations.

Once the fitness is evaluated, all sub-populations are ranked
and the non-dominated individuals are identified. An individual
is given a rank according to the number of individuals within
the sub-population that dominate that particular individual. An
individual will have a rank of 0 if it is non-dominated. Based
on their rank, the individuals are assigned to the different set
of pareto fronts. Subsequently, individuals with a rank of 1
belong to the second pareto front and so on until the entire
population is classified. This classification allows us to easily
keep track of non-dominated individuals and determine how
the rest of the individuals are performing in comparison to the
optimal solutions.

The generalized generation gap parent-centric crossover ge-
netic algorithm [32] is used to evolve the sub-populations. All
sub-populations are evolved using the parent centric crossover
operator. To generate an offspring, n parents are chosen. One of
them is randomly chosen from the non-dominated front while
the others are randomly chosen from the entire sub-population.
The crossover operator is applied to the chosen parents and
the offspring are generated. Once the offspring are generated,
they are evaluated for fitness and compared with a new set of
x parents which are randomly chosen from the sub-population.
The x best individuals from this pool are picked and replaced
in the main sub-population.

The algorithm is terminated once the maximum number
of function evaluations are reached. A final solution is then
generated and evaluated with the testing datasets (one per
objective). Each sub-population has one representing indi-

vidual in the final solution. The representing individual is
randomly chosen from the set of non-dominated individuals
for that particular sub-population. As mentioned earlier, in a
multi-objective environment, multiple optimal solutions exist
where none can claim to be better than the others. For this
reason, a random selection from the non-dominated front is
the best option. Therefore, one neural network is trained to
give predictions for multiple time-lags.

IV. EXPERIMENTS & RESULTS

A. Experimental Setup

The proposed method is tested on four time series prob-
lems. Three of these are benchmark data sets while the remain-
ing one is a financial data set taken from the NASDAQ stock
exchange. Mackey-Glass, Lorenz and the Sunspot datasets
represent the benchmark problems [33]. A total of 1000 data
points are used from the Mackey-Glass and Lorenz time series
while for the sunspot time series, a larger data set of 2000
points was used. In the financial data set, the closing stock
prices of ACI Worldwide Inc., between the period of December
2006 and February 2010 is used [34]. This is equivalent to
around 800 data points. Each dataset is divided into training
and testing set using a 50-50 split as this will allow for proper
training and good test for generalization. The embedding
dimension for the real world problems (Sunspot and ACI) is
set to d=5 and for the simulated problems (Mackey-Glass and
Lorenz), d=4 is used.

Root mean squared error (RMSE) is used to evaluate the
performance of the proposed method. The depth of search
is kept at 1 for all the sub-populations as this number has
achieved good results previously [6]. Neuron level problem
decomposition method is used for dividing the neural network
into subcomponents. The maximum number of function eval-
uations is set to 50,000 and the population size is kept at 300.
These parameters are kept the same in comparison to an earlier
method in which feedforward networks are used [11].

The G3-PCX evolutionary algorithm is used to create and
evolve all the sub-populations. The G3-PCX genetic algorithm
uses the generation gap model [32] for selection. A pool size
of 2 parents and 2 offspring was used as in previous works
[6]. Each individual within the population maintains multiple
fitness values for the different objectives. The two objectives
for this experiment are the different time lag (T) values (T=2
& T=3).

B. Results

This section reports the performance of the proposed
method for training recurrent neural networks for the time
series prediction. The results for 50 experimental runs with
95% confidence interval are given in Tables I - IV with the
best results highlighted in bold.

In the Mackey-Glass time series problem, the multi-
objective method recorded the best training and generalization
performance with 7 hidden neurons. The overall performance
improved as the number of hidden neurons increased up-till an
optimal number of 7 hidden neurons. There was no significant
difference in the performance of the proposed method across
different time-lags. This shows that the method was able to

generalize well across the different time-lags. Another impor-
tant observation was that there was no significant difference
in the training and generalization performance.

Just like the Mackey-Glass time series, the Lorenz time
series is also a simulated problem. For this problem, the
proposed method recorded the best training and generalization
performance with 9 hidden neurons. The performance kept
improving as the number of hidden neurons increased. Once
again, the method was able to generalize well across the
different time-lags with a uniform performance. Just like with
the Mackey-Glass problem, the training and generalization
performance were similar across the different hidden neurons.

The real test for the proposed method were the Sunspot and
ACI Worldwide Inc. time series problems. These are real world
time series which contain noise that makes prediction difficult.
In the Sunspot time series problem, the proposed method
recorded the best training and generalization performance with
5 hidden neurons. As the number of hidden neurons increased
(beyond 5 neurons), the performance significantly deteriorated.
As with the two previous problems, the proposed method was
able to generalize well across the different time-lags with
stable performance.

The ACI Worldwide Inc. time series has recorded the best
training and generalization performance with 5 hidden neurons.
It gave a better performance for the data set reconstructed using
a time-lag of 3. The method was able to generalize well across
the different hidden neurons but did not manage to give a
uniform performance across the different time-lags. This can
be partially attributed to the nature of the problem as stock
market time series tend to be highly chaotic and noisy. As
a result, different time-lags inherit different amounts of this
noise.

C. Discussion

The goal of multi-objective time series prediction is to
improve the prediction accuracy [15]. The proposed method
produced good results on all the benchmark problems and
also outperformed majority of the methods in the literature.
As shown in Tables V - VIII, it gave better results in
comparison to some of the recent and related methods such
as the cooperative coevolutionary recurrent neural network
(CCRNN) [6], the Type-2 fuzzy neural network [35] and
the adaptive modularity cooperative co-evolutionary recurrent
neural network (AMCC-RNN) [25]. The proposed method also
outperformed MOCCFNN [11] on both the real world time
series problems (Sunspot & ACI Worldwide Inc.). In addition,
the recurrent neural network based method (MOCCRNN)
records lower computation time in comparison to feedforward
neural networks (MOCCFNN). The proposed method used
recurrent neural network that contains feedback connections
that seem to be more appropriate than feedforward networks
[11]. This can also be the reason of better generalization
performance in comparison to other methods in the literature

The proposed method enabled to utilise different frequen-
cies defined by time-lag within the time series data, which can
be optimised in different problems. It allows for a more in-
depth utilisation of information that depend on this parameter
used for feature extraction and embedding. There needs to be
more in-depth analysis of the time-lag parameter in order to

take full advantage of embedding. With the proposed method,
a single neural network can be generalized for several different
time-lags and hence it would be useful in datasets with noise
and also missing data variables.

V. CONCLUSION

This paper presented a multi-objective cooperative co-
evolutionary method for training recurrent neural networks.
The method was applied to time series prediction where
different time-lags defined different sets of features and were
used as competing objectives. The multi-objective method
gave good results on different benchmark problems and also
outperformed majority of the methods from the literature. The
proposed method enabled recurrent neural networks perform
better than feedforward networks on real world datasets. The
recurrent neural network based multi-objective method also
records lower computation time in comparison to feedforward
networks.

In future research, different combinations of the embedding
dimension and time-lag can be used to extend the proposed
method. In the current framework, the embedding dimension
was fixed, but this can vary and could help to improve the
results further in future. The proposed method can be applied
to real world problems such as climate change problems for
cyclone track and wind intensity prediction.

REFERENCES

[1] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, pp. 182–197, 2002.

[2] C. K. Goh, K. C. Tan, D. S. Liu, and S. C. Chiam, “A competitive and
cooperative co-evolutionary approach to multi-objective particle swarm
optimization algorithm design,” European Journal of Operational Re-
search, vol. 202, pp. 42–54, 2010.

[3] M. Potter and K. De Jong, “A cooperative coevolutionary approach to
function optimization,” in Parallel Problem Solving from Nature PPSN
III, ser. Lecture Notes in Computer Science, Y. Davidor, H.-P. Schwefel,
and R. Mnner, Eds. Springer Berlin Heidelberg, 1994, vol. 866, pp.
249–257.

[4] M. A. Potter and K. A. De Jong, “Cooperative coevolution: An
architecture for evolving coadapted subcomponents,” Evol. Comput.,
vol. 8, pp. 1–29, 2000.

[5] R. Chandra, M. Frean, and M. Zhang, “On the issue of separability for
problem decomposition in cooperative neuro-evolution,” Neurocomput-
ing, vol. 87, pp. 33–40, 2012.

[6] R. Chandra and M. Zhang, “Cooperative coevolution of Elman recurrent
neural networks for chaotic time series prediction,” Neurocomputing,
vol. 186, pp. 116 – 123, 2012.

[7] K. C. Tan, T. H. Lee, Y. J. Yang, and D. S. Liu, “A cooperative
coevolutionary algorithm for multiobjective optimization,” 2004 IEEE
International Conference on Systems, Man and Cybernetics, pp. 1926—
1931, 2004.

[8] L. M. Antonio and C. A. Coello Coello, “Use of cooperative coevolution
for solving large scale multiobjective optimization problems,” 2013
IEEE Congress on Evolutionary Computation, pp. 2758–2765, 2013.

[9] E. Lorenz, “Deterministic non-periodic flows,” Journal of Atmospheric
Science, vol. 20, pp. 267 – 285, 1963.

[10] H. K. Stephen, In the Wake of Chaos: Unpredictable Order in Dynam-
ical Systems. University of Chicago Press, 1993.

[11] S. Chand and R. Chandra, “Multi-objective cooperative coevolution
of neural networks for time series prediction,” in International Joint
Conference on Neural Networks (IJCNN), Beijing, China, July 2014,
pp. 190–197.

-1

-0.5

 0

 0.5

 1

 0 50 100 150 200 250 300 350 400 450 500

O
rig

in
al

 v
s

P
re

di
ct

io
n

Time

Original
Pred.(Objective-One)

(a) Typical performance of a single experimental run on the test dataset
(Objective One) (RMSE: 0.0323)

-1

-0.5

 0

 0.5

 1

 0 50 100 150 200 250 300 350

O
rig

in
al

 v
s

P
re

di
ct

io
n

Time

Original
Pred.(Objective-Two)

(b) Typical performance of a single experimental run on the test dataset
(Objective Two) (RMSE: 0.0315)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 50 100 150 200 250 300 350 400 450 500

E
rr

o
r

Time

Error

(c) Performance Error on the test dataset (Objective One)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 50 100 150 200 250 300 350

E
rr

o
r

Time

Error

(d) Performance Error on the test dataset (Objective Two)

Fig. 2. Typical prediction performance given by by MOCC-RNN for Sunspot
time series.

TABLE I. THE PREDICTION TRAINING AND GENERALIZATION PERFORMANCE (RMSE) FOR MACKEY GLASS DATA SET.

Prob. Hidden Training Generalization Best

T=2 3 1.13E-02 ± 7.39E-04 1.13E-02 ± 7.43E-04 6.52E-03
5 1.07E-02 ± 6.28E-04 1.07E-02 ± 6.34E-04 5.79E-03
7 1.01E-02 ± 6.79E-04 1.01E-02 ± 6.83E-04 6.29E-03
9 1.11E-02 ± 6.57E-04 1.11E-02 ± 6.58E-04 5.11E-03

T=3 3 1.13E-02 ± 7.36E-04 1.12E-02 ± 7.44E-04 6.34E-03
5 1.07E-02 ± 6.24E-04 1.07E-02 ± 6.36E-04 5.78E-03
7 1.01E-02 ± 6.75E-04 1.00E-02 ± 6.87E-04 6.24E-03
9 1.11E-02 ± 6.54E-04 1.10E-02 ± 6.61E-04 4.99E-03

TABLE II. THE PREDICTION TRAINING AND GENERALIZATION PERFORMANCE (RMSE) FOR LORENZ DATA SET.

Prob. Hidden Training Generalization Best

T=2 3 1.73E-02 ± 1.54E-03 1.76E-02 ± 1.55E-03 7.45E-03
5 1.39E-02 ± 1.32E-03 1.41E-02 ± 1.37E-03 5.93E-03
7 1.49E-02 ± 1.09E-03 1.53E-02 ± 1.15E-03 6.65E-03
9 1.36E-02 ± 1.39E-03 1.37E-02 ± 1.40E-03 5.26E-03

T=3 3 1.74E-02 ± 1.54E-03 1.75E-02 ± 1.55E-03 7.43E-03
5 1.40E-02 ± 1.32E-03 1.41E-02 ± 1.36E-03 5.92E-03
7 1.50E-02 ± 1.11E-03 1.52E-02 ± 1.15E-03 6.63E-03
9 1.36E-02 ± 1.38E-03 1.37E-02 ± 1.39E-03 5.24E-03

TABLE III. THE PREDICTION TRAINING AND GENERALIZATION PERFORMANCE (RMSE) FOR SUNSPOT DATA SET.

Prob. Hidden Training Generalization Best

T=2 3 1.96E-02 ± 1.61E-03 4.88E-02 ± 7.76E-03 1.91E-02
5 1.72E-02 ± 1.22E-03 4.50E-02 ± 9.06E-03 1.64E-02
7 1.73E-02 ± 1.15E-03 5.86E-02 ± 1.82E-02 1.72E-02
9 1.87E-02 ± 1.71E-03 7.60E-02 ± 2.10E-02 1.50E-02

T=3 3 1.98E-02 ± 1.56E-03 4.88E-02 ± 7.83E-03 1.82E-02
5 1.73E-02 ± 1.17E-03 4.49E-02 ± 9.04E-03 1.61E-02
7 1.75E-02 ± 1.17E-03 5.86E-02 ± 1.82E-02 1.71E-02
9 1.90E-02 ± 1.67E-03 7.60E-02 ± 2.10E-02 1.53E-02

TABLE IV. THE PREDICTION TRAINING AND GENERALIZATION PERFORMANCE (RMSE) FOR ACI WORLDWIDE INC. DATA SET.

Prob. Hidden Training Generalization Best

T=2 3 2.15E-02 ± 3.29E-04 2.15E-02 ± 7.11E-04 1.91E-02
5 2.13E-02 ± 2.08E-04 2.08E-02 ± 3.39E-04 1.90E-02
7 2.22E-02 ± 6.85E-04 2.21E-02 ± 1.05E-03 1.92E-02
9 2.43E-02 ± 2.18E-03 2.56E-02 ± 4.15E-03 1.91E-02

T=3 3 2.24E-02 ± 3.34E-04 1.76E-02 ± 8.16E-04 1.44E-02
5 2.21E-02 ± 2.40E-04 1.67E-02 ± 4.88E-04 1.43E-02
7 2.30E-02 ± 6.49E-04 1.83E-02 ± 1.29E-03 1.43E-02
9 2.51E-02 ± 2.16E-03 2.20E-02 ± 4.30E-03 1.45E-02

TABLE V. A COMPARISON WITH THE RESULTS FROM LITERATURE ON THE MACKEY-GLASS TIME SERIES

Prediction Method RMSE NMSE
Auto regressive moving average with neural network (ARMA-ANN)(2008) [36] 2.50E-03
Radial basis network with orthogonal least squares (RBF-OLS)(2006) [37] 1.02E-03
Locally linear neuro-fuzzy model - Locally linear model tree (LLNF-LoLiMot) (2006) [37] 9.61E-04
Boosted recurrent neural networks (2006) [38] 1.60E-04
Neuro-fuzzy system with time delay coordinates (2008) [39] 1.26E-03
Particle swarm optimisation (CCPSO) (2009) [40] 8.42E-03
Neural fuzzy network and particle swarm optimisation (PS0) (2009) [40] 2.10E-02
Neural fuzzy network and cooperative particle swarm optimisation (CPS0) (2009) [40] 1.76E-02
Neural fuzzy network and differential evolution (DE) (2009) [40] 1.62E-02
Neural fuzzy network and genetic algorithm (GA) (2009)[40] 1.63E-02
Hybrid NARX-Elman RNN with Residual Analysis (2010) [41] 3.72E-05 2.70E-08
Backpropagation neural network and genetic algorithms with residual analysis (2011) [42] 1.30E-03
Synapse Level-CCRNN (2012) [6] 6.33E-03 2.79E-04
Neuron Level-CCRNN (2012) [6] 8.28E-03 4.77E-04
HMM-Fuzzy with EA (2012) [29] 4.80E-03
AMCC-RNN (2013) [25] 7.53E-03 3.90E-04
Type-2 Fuzzy Neural Networks (2014) [35] 3.90E-02
MOCCFNN with 2 objectives (T=2)[11] 3.84E-03 2.80E-05
MOCCFNN with 2 objectives (T=3)[11] 3.77E-03 2.70E-05
Proposed MOCCRNN with 2-objectives (T=2) 5.11E-03 1.82E-04
Proposed MOCCRNN with 2-objectives (T=3) 4.99E-03 1.73E-04

TABLE VI. A COMPARISON WITH THE RESULTS FROM LITERATURE ON THE LORENZ TIME SERIES

Prediction Method RMSE NMSE
Boosted recurrent neural networks (2006) [38] 3.77E-03
Evolutionary RNN (2007) [43] 8.79E-06 9.90E-10
Auto regressive moving average with neural network (ARMA-ANN)(2008) [36] 8.76E-02
Backpropagation-through-time (BPTT-RNN) (2010) [44] 1.85E-03
Real time recurrent learning (RTRL-RNN) (2010) [44] 1.72E-03
Recursive Bayesian LevenbergMarquardt (RBLM-RNN) (2010) [44] 9.0E-04
Hybrid NARX-Elman RNN with Residual Analysis (2010) [41] 1.08E-04 1.98E-10
Backpropagation neural network and genetic algorithms with residual analysis (2011) [42] 2.96E-02
Synapse Level-CCRNN (2012) [6] 6.36E-03 7.72E-04
Neuron Level-CCRNN (2012) [6] 8.20E-03 1.28E-03
AMCC-RNN (2013) [25] 5.06E-03 4.88E-04
MOCCFNN with 2 objectives (T=2)[11] 2.19E-03 2.53E-05
MOCCFNN with 2 objectives (T=3)[11] 2.18E-03 2.54E-05
Proposed MOCCRNN with 2-objectives (T=2) 5.26E-03 5.36E-04
Proposed MOCCRNN with 2-objectives (T=3) 5.24E-03 5.33E-04

TABLE VII. A COMPARISON WITH THE RESULTS FROM LITERATURE ON THE SUNSPOT TIME SERIES

Prediction Method RMSE NMSE
Radial basis network with orthogonal least squares (RBF-OLS)(2006) [37] 4.60E-02
Locally linear neuro-fuzzy model - Locally linear model tree (LLNF-LoLiMot) (2006) [37] 3.20E-02
Hybrid NARX-Elman RNN with Residual Analysis (2010) [41] 1.19E-02 5.90E-04
Synapse Level-CCRNN (2012) [6] 1.66E-02 1.47E-03
Neuron Level-CCRNN (2012) [6] 2.60E-02 3.62E-03
AMCC-RNN (2013) [25] 2.41E-02 3.11E-03
MOCCFNN with 2 objectives (T=2)[11] 1.84E-02 1.02E-03
MOCCFNN with 2 objectives (T=3)[11] 1.81E-02 9.98E-04
Proposed MOCCRNN with 2-objectives (T=2) 1.50E-02 1.52E-03
Proposed MOCCRNN with 2-objectives (T=3) 1.53E-02 1.57E-03

TABLE VIII. A COMPARISON WITH THE RESULTS FROM LITERATURE ON THE ACI-WORLDWIDE INC. TIME SERIES

Prediction Method RMSE NMSE
CCFNN [26] 1.91E-02 -
MOCCFNN with 2 objectives (T=2)[11] 1.90E-02 -
MOCCFNN with 2 objectives (T=3)[11] 1.55E-02 -
Proposed MOCCRNN with 2-objectives (T=2) 1.90E-02 4.39E-03
Proposed MOCCRNN with 2-objectives (T=3) 1.43E-02 2.66E-03

[12] F. Takens, “Detecting strange attractors in turbulence,” in Dynamical
Systems and Turbulence, Warwick 1980, ser. Lecture Notes in Mathe-
matics, 1981, pp. 366–381.

[13] S. Chiam, K. Tan, and A. Mamun, “Multiobjective evolutionary neural
networks for time series forecasting,” in Evolutionary Multi-Criterion
Optimization, ser. Lecture Notes in Computer Science, S. Obayashi,
K. Deb, C. Poloni, T. Hiroyasu, and T. Murata, Eds. Springer Berlin
Heidelberg, 2007, vol. 4403, pp. 346–360.

[14] J. Gonzlez, I. Rojas, H. Pomares, and J. Ortega, “RBF neural networks,
multiobjective optimization and time series forecasting,” in Connection-
ist Models of Neurons, Learning Processes, and Artificial Intelligence,
ser. Lecture Notes in Computer Science, J. Mira and A. Prieto, Eds.
Springer Berlin Heidelberg, 2001, vol. 2084, pp. 498–505.

[15] J. Fieldsend and S. Singh, “Pareto evolutionary neural networks,”
Neural Networks, IEEE Transactions on, vol. 16, no. 2, pp. 338–354,
Mar. 2005.

[16] R. Salomon, “Re-evaluating genetic algorithm performance under co-
ordinate rotation of benchmark functions. a survey of some theoretical
and practical aspects of genetic algorithms,” Biosystems, vol. 39, no. 3,
pp. 263 – 278, 1996.

[17] F. Gomez, J. Schmidhuber, and R. Miikkulainen, “Accelerated neural
evolution through cooperatively coevolved synapses,” J. Mach. Learn.
Res., vol. 9, pp. 937–965, 2008.

[18] R. Chandra, M. Frean, M. Zhang, and C. W. Omlin, “Encoding sub-
components in cooperative co-evolutionary recurrent neural networks,”
Neurocomputing, vol. 74, no. 17, pp. 3223 – 3234, 2011.

[19] R. de A Araujo, A. de Oliveira, and S. Soares, “A quantum-inspired
hybrid methodology for financial time series prediction,” in Neural Net-
works (IJCNN), The 2010 International Joint Conference on, Barcelona,
Spain, Jul. 2010, pp. 1–8.

[20] T. Ferreira, G. Vasconcelos, and P. Adeodato, “A new evolutionary
approach for time series forecasting,” in Computational Intelligence
and Data Mining, Proceedings of the IEEE Symposium on, Honolulu,
Hawaii, USA, Mar. 2007, pp. 616–623.

[21] E. Parras-Gutierrez and V. Rivas, in Time series forecasting: Automatic
determination of lags and radial basis neural networks for a changing
horizon environment, Barcelona, Spain, Jul. 2010, pp. 1–7.

[22] R. de A.Araujo, R. Aranildo, and T. Ferreira, in Morphological-Rank-
Linear Time-lag Added Evolutionary Forecasting method for financial
time series forecasting, Hong Kong, China, Jun. 2008, pp. 1340–1347.

[23] M. Negnevitsky, Artificial Intelligence A Guide to Intelligent Systems :
2nd Edition. Addison Wesley, 2005.

[24] R. Chandra, M. Frean, and M. Zhang, “Adapting modularity during
learning in cooperative co-evolutionary recurrent neural networks,” Soft
Computing - A Fusion of Foundations, Methodologies and Applications,
vol. 16, no. 6, pp. 1009–1020, 2012.

[25] R. Chandra, “Adaptive problem decomposition in cooperative coevolu-
tion of recurrent networks for time series prediction,” in International
Joint Conference on Neural Networks (IJCNN), Dallas, TX, USA,
August 2013, pp. 1–8.

[26] S. Chand and R. Chandra, “Cooperative coevolution of feed forward
neural networks for financial time series problem,” in International Joint
Conference on Neural Networks (IJCNN), Beijing, China, July 2014, pp.
202–209.

[27] R. Chandra, “Competitive two-island cooperative coevolution for train-
ing Elman recurrent networks for time series prediction,” in Interna-
tional Joint Conference on Neural Networks (IJCNN), Beijing, China,
July 2014, pp. 565–572.

[28] ——, “Competition and collaboration in cooperative coevolution of
Elman recurrent neural networks for time-series prediction,” Neural
Networks and Learning Systems, IEEE Transactions on, p. In Press,
2015.

[29] M. R. Hassan, B. Nath, M. Kirley, and J. Kamruzzaman, “A hybrid of
multiobjective evolutionary algorithm and hmm-fuzzy model for time
series prediction,” Neurocomputing, vol. 81, pp. 1–11, 2012.

[30] W. Du, S. Y. S. Leung, and C. K. Kwong, “Time series forecasting
by neural networks: A knee point-based multiobjective evolutionary

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 20 40 60 80 100 120 140 160 180 200

O
rig

in
al

 v
s

P
re

di
ct

io
n

Time

Original
Pred.(Objective-One)

(a) Typical performance of a single experimental run on the training dataset
(Objective One) (RMSE: 0.0215)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 20 40 60 80 100 120 140

O
rig

in
al

 v
s

P
re

di
ct

io
n

Time

Original
Pred.(Objective-Two)

(b) Typical performance of a single experimental run on the test dataset
(Objective Two) (RMSE: 0.0151)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 20 40 60 80 100 120 140 160 180 200

E
rr

o
r

Time

Error

(c) Performance Error on the training dataset (Objective One)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 20 40 60 80 100 120 140

E
rr

o
r

Time

Error

(d) Performance Error on the test dataset (Objective Two)

Fig. 3. Typical prediction performance given by by MOCC-RNN for Finance-
ACI time series.

algorithm approach,” Expert Systems with Applications, vol. 41, no. 18,
pp. 8049 – 8061, 2014.

[31] C. Smith and Y. Jin, “Evolutionary multi-objective generation of recur-
rent neural network ensembles for time series prediction,” Neurocom-
puting, vol. 143, pp. 302 – 311, 2014.

[32] K. Deb, A. Anand, and D. Joshi, “A computationally efficient evolution-
ary algorithm for real-parameter optimization,” Evol. Comput., vol. 10,
no. 4, pp. 371–395, 2002.

[33] SILSO World Data Center, “The International Sunspot Number
(1834-2001), International Sunspot Number Monthly Bulletin and
Online Catalogue,” Royal Observatory of Belgium, Avenue Circulaire
3, 1180 Brussels, Belgium, accessed: 02-02-2015. [Online]. Available:
http://www.sidc.be/silso/

[34] “NASDAQ Exchange Daily: 1970-2010 Open, Close, High,
Low and Volume,” accessed: 02-02-2015. [Online]. Available:
http://www.nasdaq.com/symbol/aciw/stock-chart

[35] F. Gaxiola, P. Melin, F. Valdez, and O. Castillo, “Interval type-2 fuzzy
weight adjustment for backpropagation neural networks with application
in time series prediction,” Information Sciences, vol. 260, pp. 1 – 14,
2014.

[36] I. Rojas, O. Valenzuela, F. Rojas, A. Guillen, L. Herrera, H. Pomares,
L. Marquez, and M. Pasadas, “Soft-computing techniques and arma
model for time series prediction,” Neurocomputing, vol. 71, no. 4-6,
pp. 519 – 537, 2008.

[37] A. Gholipour, B. N. Araabi, and C. Lucas, “Predicting chaotic time
series using neural and neurofuzzy models: A comparative study,”
Neural Process. Lett., vol. 24, pp. 217–239, 2006.

[38] M. Assaad, R. Bon, and H. Cardot, “Predicting chaotic time series by
boosted recurrent neural networks,” in Neural Information Processing,
ser. Lecture Notes in Computer Science, I. King, J. Wang, L.-W. Chan,
and D. Wang, Eds. Springer Berlin / Heidelberg, 2006, vol. 4233, pp.
831–840.

[39] J. Zhang, H. Shu-Hung Chung, and W.-L. Lo, “Chaotic time series
prediction using a neuro-fuzzy system with time-delay coordinates,”
Knowledge and Data Engineering, IEEE Transactions on, vol. 20, no. 7,
pp. 956 –964, july 2008.

[40] C.-J. Lin, C.-H. Chen, and C.-T. Lin, “A hybrid of cooperative particle
swarm optimization and cultural algorithm for neural fuzzy networks
and its prediction applications,” Systems, Man, and Cybernetics, Part
C: Applications and Reviews, IEEE Transactions on, vol. 39, no. 1, pp.
55–68, Jan. 2009.

[41] M. Ardalani-Farsa and S. Zolfaghari, “Chaotic time series prediction
with residual analysis method using hybrid Elman-NARX neural net-
works,” Neurocomputing, vol. 73, no. 13-15, pp. 2540 – 2553, 2010.

[42] ——, “Residual analysis and combination of embedding theorem and
artificial intelligence in chaotic time series forecasting,” Appl. Artif.
Intell., vol. 25, pp. 45–73, 2011.

[43] Q.-L. Ma, Q.-L. Zheng, H. Peng, T.-W. Zhong, and L.-Q. Xu, “Chaotic
time series prediction based on evolving recurrent neural networks,” in
Proceedings of the International Conference on Machine Learning and
Cybernetics, Hong Kong, China, Aug. 2007, pp. 3496 –3500.

[44] D. Mirikitani and N. Nikolaev, “Recursive bayesian recurrent neural
networks for time-series modeling,” Neural Networks, IEEE Transac-
tions on, vol. 21, no. 2, pp. 262 –274, Feb. 2010.

