
Competitive Two-Island Cooperative Co-evolution
for Training Feedforward Neural Networks for

Pattern Classification Problems
Rohitash Chandra ∗ † and Gary Wong ∗ †

∗ School of Computing Information and Mathematical Sciences
University of the South Pacific, Suva, Fiji. http://scims.fste.usp.ac.fj/

† Artificial Intelligence and Cybernetics Research Group, Software Foundation,
Nausori, Fiji. http://aicrg.softwarefoundationfiji.org/

Email: c.rohitash@gmail.com, Email: gary.wong.fiji@gmail.com

Abstract—In the application of cooperative coevolution for
neuro-evolution, problem decomposition methods rely on ar-
chitectural properties of the neural network to divide it into
subcomponents. During every stage of the evolutionary process,
different problem decomposition methods yield unique character-
istics that may be useful in an environment that enables solution
sharing. In this paper, we implement a two-island competition
environment in cooperative coevolution based neuro-evolution for
feedforward neural networks for pattern classification problems.
In particular the combinations of three problem decomposition
methods that are based on the architectural properties that refers
to neural level, network level and layer level decomposition.
The experimental results show that the performance of the
competition method is better than that of the standalone problem
decomposition cooperative neuro-evolution methods.

I. INTRODUCTION

In nature, it is difficult for an organism to acquire re-
sources that are concurrently being consumed or defended by
competing species [1]. In a way, competition reduces each
others growth and reproductive processes but in turn ulti-
mately enhances survival characteristics which are found in the
genes of competing species [2]. Collaboration enables survival
amongst species in environments with limited resources [1].
The Reproduction and creation of future populations are also
moderately effected by environmental conditions [2].

In evolutionary algorithms, early methods of competition
have been incorporated using two populations to represent
‘parasites’ and ‘hosts’ with evolutionary mechanisms such as
fitness sharing, elitism and selection [3].

Cooperative Coevolution (CC) divides a problem into sub-
components and employs evolutionary algorithms to collec-
tively solve the main problem [4]. Each subcomponent is
a partial solution to the original problem and is conjoined
with others through evolutionary processes where a more
efficient solution may be obtained [5]. Classic cooperative
co-evolutionary method appeals to problems that are fully
separable [6] where no or little interaction is present amongst
decision variables [7]. Cooperative coevolution has mainly
been applied for large scale optimisation problems [6], [8],

multi-objective problems [9] and neuro-evolution of feedfor-
ward and recurrent neural networks for problems that involve
pattern classification [10], [11], [12], [13], control [14], [15]
and time series prediction [16], [17], [18].

In the case of neuro-evolution using cooperative coevolu-
tion, the issue of inter-dependencies between decision vari-
ables or synapses have also been explored however, more
work needs to be done as it is difficult to fully decompose
the neural network as the problem at hand also plays a part
[19]. Problem decomposition at the synapse level creates a
subcomponent for every synapse which has also showed to
be more effective for control problems [14], [15] and time
series prediction problems [16] while less effective for pattern
classification problems [12], [19].

Another problem decomposition method is at neuron level
which groups synapses that are attached to a particular neuron
and has shown the best results in pattern classification [12],
[20] and competitive results with synapse level decomposition
for time series prediction problems [16]. Both decomposition
methods have good levels of success and unique characteristics
for the varying problems and neural network architectures.
The neural network architecture (feedforward vs recurrent) the
training problem type (control, pattern classification or time
series prediction) are two important aspects that need to be
taken into account when cooperative coevolution is used for
neuro-evolution [19].

Competition in cooperative coevolution has been used in
multi-objective [21] and dynamic environment optimizations
where problem decomposition methods adapt to changing
environments [22]. Additionally, the methods are routinely
swapped through adaptation over the course of an evolutionary
phase. Although the approach of adaptation has shown to
be resourceful on pattern recognition [23] and grammatical
inference problems [24], there is a disadvantage in terms
of cost with regards to parameter tuning that determines
when and how to adapt problem decomposition methods [24].
Generally, these settings refer to the estimated times at which
to switch decomposition methods and the duration of use for



each method [23].
In this paper, we apply competitive island-based cooperative

coevolution (CICC) to pattern classification problems that uses
varying decomposition methods to enable competition and
collaboration. In CICC, problem decomposition methods are
implemented as islands that compete and collaborate with each
other using injection methods. In our previous work, CICC has
shown to yield promising results when applied to time series
prediction problems [17].

The main contribution of this paper is to explore if CICC
is effective on pattern classification problems. The measure of
effectiveness here is the ability of the algorithm to converge
faster and also to lessen the number of function evaluations
while using different problem decomposition methods simul-
taneously.

The remaining sections of the paper are structured as fol-
lows. Section 2 provides a concise background on cooperative
coevolution in neuro-evolution. Section 3 provides information
on competition and collaboration in feed-forward neural net-
works. Section 4 details the experiment configuration, results
and discussion. Section 5 will conclude with keynotes on
future work.

II. BACKGROUND

A. Cooperative Coevolution for Neuro-Evolution

A conventional way of applying a cooperative co-
evolutionary algorithm (CCEA) to a problem begins by di-
viding it into smaller groups or subcomponents. When a
subcomponent is created, it is implemented as a sub-population
in CCEA and subjected to a predefined evolutionary algorithm
(EA) [25], [17], [4]. The cooperative factor here relates to
the relationships among these components when individuals
are evaluated though shared fitness evaluation. The process
of breaking a problem down into subcomponents is called
problem decomposition where the size and encoding of each
subcomponent grossly depends on the problem at hand [19].

Original cooperative co-evolutionary techniques have been
used for general function optimization problems where each
dimension (decision variable) is implemented as a separate
subcomponent [4]. Although later studies have found that the
original scheme appeals solely to fully separable problems
[6], there have been continuous work on applying cooperative
coevolution to large scale non-separable function optimization
problems [6], [26], [27], [8]. The separability of a function
with m variables is defined by whether or not it can be ex-
pressed as a sum of m functions in relation to a single variable
[28]. Where a problem is non-separable there exists inter-
dependencies among the variables when compared to non-
separable problems where there is little to none. Moreover,
real world problems can either be fully separable or fully non-
separable.

In cooperative co-evolution, sub-populations incorporate a
round-robin selection procedure during evolution for a certain
number of generations which is referred to as the depth
of search (predetermined according to problem nature). The
depth of search is used to assess the ability of problem

decomposition methods to group interacting variables into
separate components [20].

III. COMPETITION AND COLLABORATION IN
COOPERATIVE COEVOLUTION

In an environment with multiple species, competition can
be seen as a means of ‘natural rivalry’ for access to limited
resources [1], [2]. Individual species compete for these re-
sources that may vary according to the habitat, environmental
conditions and external sources such as human interaction [2].
Collaboration on the other hand is also an important feature
used for survival in nature. With collaboration, species with
different adaptation characteristics share resources when faced
with specific challenges. These individual species or subcom-
ponents are implemented as sub-populations in a cooperative
co-evolutionary framework where genetic materials are not
shared with other sub-populations. These genetic materials in
sub-populations will not be shared in conventional cooperative
coevolution but can only be shared through collaboration
which is helpful in evolutionary procedures [17], [17]. In
general, competition and collaboration are vital components
of evolution where different groups of species compete for
resources in the same environment. In cooperative coevolution,
the variety of species are represented as problem decomposi-
tion methods [12]. These decomposition methods participate
in competition and collaboration through fitness evaluation
during evolution.

In this section, we apply a cooperative co-evolutionary
method called Competitive Island-Based Cooperative Coevo-
lution (CICC) for pattern classification. CICC employs dif-
ferent problem decomposition methods that compete with
different features in terms of diversity and degree of non-
separability [19]. The method employs the strength of different
problem decomposition methods which are described by the
level of interaction between variables and the diversity (total
number of sub-populations) during evolution [19].

In the remaining parts of the discussion, the different types
of problem decomposition methods will be referred to as ‘is-
lands’. In CICC, the different islands compare solutions after
fixed intervals of time (island evolution time) and exchange
the more promising solution between them. For the case of
this model, two islands are used which are derived from the
individual decomposition methods. The details of each island
(decomposition methods) are given below.

1) Network Level: Standard neuro-evolution where the
entire network is used ‘as-is’ without decomposition.

2) Neural Level problem decomposition: Decomposes
the network into neuron level. The number of neurons
in the hidden and output layer determines the number
of subcomponents [19], [20].

3) Layer Level problem decomposition: Decomposes
the network by layers into two parts. The first
subcomponent contains all the weights from input to
hidden layer and the second subcomponent contains all
the weights from hidden to output layer.



Fig. 1. Two-Island CICC for Neuro-Evolution. The CICC methods employ
neural level (NL) vs network level (NetL), neural level vs layer level (LSP)
and layer level vs network level island based competition.

Alg. 1 CICC for Feedforward Neural Network (LSP vs NetL)
Stage 1: Initialisation:

i. Cooperatively evaluate Layer Level island
ii. Equalize sub-populations on both islands
iii. Evaluate Network Level island

Stage 2: Evolution:

while FuncEval ≤ GlobalEvolutionTime do
while FuncEval ≤ Island-Evolution-Time do

foreach Sub-population at Layer Level Island do
foreach Depth of n Generations do

Create new individuals using genetic operators
Cooperative Evaluation

end
end

end
while FuncEval ≤ Island-Evolution-Time do

for the Sub-population at Network Level Island
foreach Depth of n Generations do

Create new individuals using genetic operators
Cooperative Evaluation

end
end
Stage 3: Competition: Compare and mark the island with best fitness.
Stage 4: Collaboration: Inject the best individual from the island with
better fitness into the other island.
if Layer Level Island≤ Network Level Island then

Copy Layer Level Island best into chosen Network Level Island
Individual.

end
else

Copy Network Level Island best into chosen Layer Level Island
Individuals.

end
end

The CICC methodology for two-island competition is given
in Algorithms 1, 2 and 3.

For all algorithms; In Stage 1, the sub-populations are ini-
tialised and cooperatively evaluated using network, neuron and
layer level problem decomposition methods. Before evaluating
the network level island, the sub-populations from neuron level

Alg. 2 CICC for Feedforward Neural Network (NL vs LSP)
Stage 1: Initialisation:

i. Cooperatively evaluate Neural Level island
ii. Equalize sub-populations on both Method 3:islands
iii. Evaluate Layer Level island

Stage 2: Evolution:

while FuncEval ≤ GlobalEvolutionTime do
while FuncEval ≤ Island-Evolution-Time do

foreach Sub-population at Neural Level Island do
foreach Depth of n Generations do

Create new individuals using genetic operators
Cooperative Evaluation

end
end

end
while FuncEval ≤ Island-Evolution-Time do

foreach Sub-population at Layer Level Island do
foreach Depth of n Generations do

Create new individuals using genetic operators
Cooperative Evaluation

end
end

end
Stage 3: Competition: Compare and mark the island with best fitness.
Stage 4: Collaboration: Inject the best individual from the island with
better fitness into the other island.
if Neural Level Island≤ Layer Level Island then

Copy Neural Level Island best into chosen Layer Level Island
Individual.

end
else

Copy Layer Level Island best into chosen Neural Level Island
Individuals.

end
end

island are copied to ensure that both islands start from the
same position in search space thus creating an equal and fair
competition field. This also ensures that the material injected
from the winner island is valid and applicable as the neural
network training problem is multi-modal.

In Stage 2, the islands are exposed to evolution in an island
based round-robin fashion where each island is evolved for
a predefined set amount of time based on predefined fitness
evaluation. The time taken to evolve an island is called ‘island
evolution time’ and is given by the number of cycles that
formulates the required number of function evaluations in the
respective islands [17].

In competition phase (Stage 3), the best solutions from
all the islands are compared and the overall best marked for
injection into other islands. The best solution is made up of
the best individuals from all the sub-populations.

In the collaboration mechanism (Stage 4), the algorithm
needs to take into account how the solution from one island
will be transferred into the rest of the islands. As presented in
previous work [17], the respective islands need to be given the
same number of function evaluations. Due to the requirement
that each island be evaluated for complete cycles, the number
of function evaluations for both islands should not be exactly
the same but rather close approximates of each other.

With reference to cooperative co-evolution, a cycle is de-
fined by the evolution time of the sub-populations when



Alg. 3 CICC for Feedforward Neural Network (NL vs NetL)
Stage 1: Initialisation:

i. Cooperatively evaluate Neural Level island
ii. Equalize sub-populations on both islands
iii. Evaluate Network Level island

Stage 2: Evolution:

while FuncEval ≤ GlobalEvolutionTime do
while FuncEval ≤ Island-Evolution-Time do

foreach Sub-population at Neural Level Island do
foreach Depth of n Generations do

Create new individuals using genetic operators
Cooperative Evaluation

end
end

end
while FuncEval ≤ Island-Evolution-Time do

for the Sub-population at Network Level Island
foreach Depth of n Generations do

Create new individuals using genetic operators
Cooperative Evaluation

end
end
Stage 3: Competition: Compare and mark the island with best fitness.
Stage 4: Collaboration: Inject the best individual from the island with
better fitness into the other island.
if Neural Level Island≤ Network Level Island then

Copy Neural Level Island best into chosen Network Level Island
Individual.

end
else

Copy Network Level Island best into chosen Neural Level Island
Individuals.

end
end

evolved for t number of generations in a round-robin fashion.
Once the participating islands have been evolved for the island
evolution time, the algorithm checks and compares the best
solution of all these islands. The top contending solution
among the islands is copied among them, the reason for this is
to help the rest of the islands in the next phase of competition.

Individuals in the respective sub-populations are coopera-
tively evaluated by concatenating a chosen individual from a
given sub-population SP with the best individuals from other
sub-populations [4], [12], [20], [16]. The chosen individual is
encoded into the feed-forward neural network where the fitness
can be computed. The goal of evolution is to increase fitness
while decreasing the network error. The reason for this is to
ensure that each sub-component in the network is evaluated
till cycle completion.

A. Competition

In competition, each island employs a distinct problem de-
composition method. The number of function evaluations per
island is dependent on the the number of sub-populations used
by the decomposition method. There are more sub-populations
in the neural level island then the two sub-populations of the
layer level island and single population of the network level
island.

Moreover, each island needs to have the same amount of
evolution time with the same or similar required number
of function evaluations. A complete cycle for an island is

distinct from the rest of the islands thus the function evaluation
count for each cannot be exactly the same but may have
similar evaluation times with a slight variance in the degree
of difference.

B. Collaboration

The comparison of best individuals between islands do not
occur until the commence of the collaborative process. The
island that contains an individual with better solution is copied
to the other islands as shown in Stage 4 of Algorithms 1,
2 and 3 and Figure 2. The way in which an individual is
concatenated into another island is paramount since the size
and number of sub-populations vary from island to island.
When the winning island copies or injects its best individual
to the other island, they are concatenated and then later broken
down and mapped into the other island, keeping into account
that the size of the subcomponents will not be the same, e.g,
when best individuals layer level sub-populations island are
injected in neural level island.

After the injection, the copied individuals can be re-
evaluated. This re-evaluation strategy can be omitted if the
fitness is transferred along with the individual in order to save
function evaluation time. Further on, it is important that this
fitness and solution be injected in the new island(s) at the
exact position the best individual was derived from the original
winner island.

Additionally, it is worth noting that each of these individuals
have distinct fitness values. We take the best fitness value of
the last sub-population in the winner island and replace the
old fitness values on the other islands (sub-populations) with
this new fitness.

C. Island Initialisation

We initialise all the islands in Stage 1 of Algorithm 1 with
random real numbers and ensure that all the islands have the
same values or beginning position in search space. Before the
sub-populations on the islands are evaluated, we initialise all
of them by copying the population from one island to the rest
of the participating islands. The reason for doing this is to
create a fair competition where all the participating problem
decomposition methods start from the same point and have
a single local minimum at the beginning of evolution. We
note that the search space of neural network optimisation is
multi-modal and there can be several unique solutions with
equal value or fitness. Therefore it is important for islands
that compete and collaborate with each other to have similar
search space from the same region so that island injection can
be better utilised.

D. Performance Evaluation

The optimisation time for CICC is computed from two
empirical scalar quantities which are the number of function
evaluations and the total success rate [17]. These two measure-
ments are also used as the stopping criteria for an experimental
run. Further on, the success rate is used to determine if the
algorithm can output a desirable solution within a specified



Fig. 2. Concatenating the best individuals from neural level island and injecting into network level island. The same is done from neural level to layer level
island for two-island competition. Note the fitness of the concatenated individual is acquired from the fitness of the last best individual from the neural level
island. The position of the concatenated individual also comes from here. In CICC-NL-NetL, the transfer of best individuals from network level to neural level
works exactly in the same manner except, the network level individual is broken down to subcomponents to match neural level. In CICC-NL-LSP, transferring
best individuals requires careful attention as the receiving island component size may differ. The figure shows that the fitness of the single best individual
from the neural level replaces the fitness of all best individuals on the second island.

time. Where an experiment run yields a desired solution, only
then will it be considered a success. The training percentage
of an experiment run is used to compare to the desired success
rate and is important for robustness [17]. Additionally, a
successful run may be awarded provided the max function
evaluation time has not been reached. The desired solution
during training of the neural network is defined by a minimum
network error or classification performance on the training data
set.

In this study, the algorithm is tested using different counts
of hidden neurons to analyse the appropriate network config-
uration for scalability and robustness. The optimisation time
is obtained from the average function evaluation count in n
experiments. Note, experiments that do not converge within the
specified evaluation period is also included in the computation
of the optimization time.

TABLE I
DATASET INFORMATION AND NEURAL NETWORK CONFIGURATION

Problem Input Output Min. Train (%) Max. Time Samples
4-Bit 4 1 – 30000 16
Wine 13 3 95 15000 178
Iris 4 3 95 15000 150

Heart 13 1 88 50000 303
Cancer 9 1 95 15000 699

IV. SIMULATION AND ANALYSIS

In this section we present an experimental study of Com-
petitive Island-Based Cooperative Co-evolution (CICC). The
cooperative co-evolutionary approach used here has 200 indi-
viduals in each sub-population. The chromosomes in the sub-

TABLE IV
PERFORMANCE FOR THE HEART PROBLEM

Heart
Method H (x̄) Test Error (%)

6 19404 7983 78.61 1.62 80
8 15719 3509 79.88 1.08 100

CC-NL 10 35760 7818 80.00 3.2 50
12 24445 4202 80.55 2.13 100
14 18360 3500 78.77 1.35 100
6 41958 7839 79.62 1.56 30
8 39240 8831 80.88 0.72 50

CC-NetL 10 42480 6489 80.92 1.19 60
12 46210 8631 77.23 1.45 40
14 45312 8871 74.12 1.67 10
6 37908 3954 81.48 0.59 30
8 36288 3674 81.84 0.90 40

CC-LSP 10 46890 4735 80.55 2.30 20
12 48168 5617 82.22 1.53 20
14 49644 1405 80.00 2.80 10
6 31038 6321 79.44 1.97 60
8 13824 2780 79.11 1.26 100

CICC-NL-NetL 10 18414 2007 78.55 1.57 100
12 20358 4116 79.55 1.11 100
14 19830 3287 80.44 1.38 100
6 27349 9678 78.61 1.57 80
8 22356 8686 80.00 1.19 90

CICC-NL-LSP 10 20922 3923 80.33 1.79 100
12 18564 3537 78.77 2.51 100
14 21690 2849 79.33 1.20 100
6 33948 6875 79.44 1.48 60
8 31234 6234 80.44 1.13 60

CICC-LSP-NetL 10 38964 7689 79.62 0.90 70
12 35214 6941 78.34 0.98 40
14 32015 6671 80.12 1.10 50

H = Hidden Neurons (%) = Percentage Success Rate
(x̄) = Mean Function Evaluations



TABLE II
PERFORMANCE FOR THE WINE AND 4-BIT PROBLEMS

Wine 4-Bit
Method H (x̄) Test Error (%) H (x̄) Test Error (%)

4 5611 508 94.20 1.14 100 4 11151 6237 100.00 - 80
6 6068 482 94.30 0.84 100 6 6001 1921 100.00 - 100

CC-NL 8 6515 530 93.10 1.03 100 8 5772 1093 100.00 - 100
10 7238 991 92.60 0.98 100 10 7012 2314 100.00 - 100
12 7698 864 92.85 1.10 100 12 6318 862 100.00 - 100
4 13314 1430 94.38 3.18 40 4 25819 5497 100.00 - 20
6 14539 1094 90.83 1.33 30 6 23004 6667 100.00 - 30

CC-NetL 8 14641 834 92.50 1.46 10 8 12614 5549 100.00 - 80
10 14985 864 91.23 1.64 10 10 8100 1028 100.00 - 100
12 14652 712 92.31 1.39 10 12 9590 1147 100.00 - 100
4 10724 1348 93.00 1.58 67 4 29472 1428 72.50 - 10
6 11356 1149 94.17 1.46 80 6 20664 7278 87.50 - 40

CC-LSP 8 13855 1149 93.60 2.2 53 8 21696 5309 97.50 - 60
10 15686 822 92.92 4.23 20 10 8040 1331 100.00 - 100
12 15434 745 91.20 3.56 10 12 9360 2044 100.00 - 100
4 5950 566 93.75 1.38 100 4 12090 5821 100.00 - 80
6 6696 638 93.58 1.68 100 6 9198 4577 100.00 - 90

CICC-NL-NetL 8 6820 423 94.08 1.14 100 8 5454 927 100.00 - 100
10 8424 1685 94.00 1.85 30 10 9666 947 100.00 - 100
12 8820 1592 93.25 2.08 30 12 7098 903 100.00 - 100
4 6174 687 94.16 1.46 100 4 17423 6736 100.00 - 60
6 6750 628 95.16 0.76 100 6 4074 931 100.00 - 100

CICC-NL-LSP 8 7128 657 94.83 1.32 100 8 2808 360 100.00 - 100
10 8164 601 93.66 1.30 100 10 12246 5877 100.00 - 80
12 8670 893 93.36 1.07 96 12 3588 870 100.00 - 100
4 8004 2274 94.23 1.42 90 4 21563 10231 100.00 - 60
6 5585 1018 94.23 1.24 100 6 14400 6530 100.00 - 80

CICC-LSP-NetL 8 7764 1866 94.60 1.26 90 8 6948 4875 100.00 - 90
10 12600 1676 93.12 2.14 50 10 7116 4021 100.00 - 100
12 12876 1723 94.52 0.86 60 12 6816 4860 100.00 - 90

H = Hidden Neurons (%) = Percentage Success Rate (x̄) = Mean Function Evaluations

TABLE III
PERFORMANCE FOR THE IRIS AND CANCER PROBLEMS

Iris Cancer
Method H (x̄) Test Error (%) H (x̄) Test Error (%)

4 5112 1750 96.50 1.07 100 4 4122 1156 96.73 0.49 100
6 4080 1570 95.50 1.63 100 6 4930 1566 97.13 0.57 100

CC-NL 8 4392 1370 97.00 0.87 100 8 4811 1024 97.77 0.37 100
10 4492 1135 96.00 1.75 100 10 4963 1315 98.16 0.34 100
12 3376 1760 95.00 2.4 100 12 5116 962 97.77 0.48 100
4 5950 3567 95.00 2.77 100 4 8448 2869 95.54 0.98 80
6 10836 2705 97.50 1.37 100 6 10188 2802 95.89 0.47 70

CC-NetL 8 12243 2262 96.66 1.33 60 8 10848 3527 95.69 0.27 50
10 13546 3136 92.55 1.32 20 10 11220 2927 95.94 0.38 50
12 12138 3859 96.66 1.33 60 12 9000 3105 96.04 0.71 70
4 5614 3674 94.50 2.61 100 4 9820 3203 95.89 0.43 70
6 7017 3768 94.38 3.18 80 6 6336 3173 96.23 0.43 90

CC-LSP 8 14637 479 95.00 2.2 40 8 8025 2604 96.04 0.71 80
10 12609 2964 93.75 4.23 40 10 11220 2644 96.43 0.47 60
12 13671 4321 91.02 4.54 20 12 13305 2114 96.28 0.49 40
4 4248 1441 97.00 0.87 100 4 8010 2903 97.22 0.28 90
6 5280 1862 95.00 2.74 100 6 4410 738 97.52 0.51 100

CICC-NL-NetL 8 5640 1868 94.31 1.84 100 8 4806 1889 97.77 0.44 100
10 4392 1253 96.50 1.76 100 10 4290 780 97.87 0.41 100
12 6384 2085 96.00 1.02 100 12 4602 401 98.61 0.30 100
4 5656 2520 95.00 1.65 100 4 6150 3431 96.58 0.37 80
6 7440 2515 93.50 1.77 100 6 4368 1243 97.27 0.31 100

CICC-NL-LSP 8 7320 2148 94.25 1.98 100 8 3456 522 97.57 0.32 100
10 7440 2198 95.75 1.47 100 10 4092 542 98.21 0.39 100
12 7764 2156 96.00 0.60 100 12 4368 618 98.21 0.36 100
4 4044 2324 96.25 1.03 100 4 5133 1242 95.93 0.26 88
6 6028 2615 94.50 1.51 100 6 6405 1475 96.26 0.27 82

CICC-LSP-NetL 8 6668 2490 96.00 1.02 100 8 4874 1269 96.38 0.29 88
10 7024 2809 96.00 1.02 100 10 3280 928 96.38 0.21 96
12 7724 2611 94.50 2.38 100 12 3288 1018 96.57 0.23 94

H = Hidden Neurons (%) = Percentage Success Rate (x̄) = Mean Function Evaluations



populations are initialised with random data in the range of
[-5, 5] as shown in Figure 2.

A. Classification Problems and Configuration

To simulate the CICC architecture in our previous work
[29], we use four pattern classification problems from the
UCI Machine Learning Repository [30] which are Wine, Iris,
Cleveland Heart Disease and Wisconsin Breast Cancer. The
only problem that is not derived from the repository is the 4-
bit parity problem. In this problem, the even parity is computed
based on the even count of 1’s in the input data. These
problems have been frequently used in other studies to evaluate
performances of new methods [12], [19]. According to the
contributor of the problem set, the Wisconsin Breast Cancer
problem has 16 missing values and is class unbalanced (34.5%
Malignant and 65.5% Benign) [30].

Further details of each problem are provided in Table I.
In the 4-Bit parity problem, there is no maximum training
time for the network but rather it is trained until the mean-
squared error goes below 1E-3 [19]. Apart from the 4-Bit
parity problem, 30% of the data is used for testing and 70%
for training. In each problem, at each hidden neuron (e.g. 4, 6,
8, 10), there are 50 independent runs initialised with different
positions in the search spaces.

With reference to neural network topology, the number
of dimensions in the optimisation problem is determined by
the number of problems tested. This is used to gauge the
performance of the CICC method on various levels of scalabil-
ity, robustness and difficulty. In the standalone methods used
(neural level (NL), network level (NetL) and layer level(LSP)),
the termination condition for each problem is provided in Table
I as maximum time (Max. Time).

B. Results and Discussion

The CICC methods employed in this study have shown
better performance when compared to the standalone co-
evolutionary approaches at the neural, layer and network
level. This improvement in performance can be attributed to
the collaborative features of two-island competition and the
implementation of islands on separate threads. A major goal of
employing CICC is to improve experiment success rates while
lowering the mean function evaluations. Where an experiment
has a max time of k evaluations, the max time permitted overall
for both islands would be 2k, however, per each island, the
thread is k evaluations.

The results of the experiments are given in Tables II - IV
where a comparison is made between standalone cooperative
co-evolutionary techniques and the CICC methods. Note that
all the methods incorporated G3-PCX evolutionary algorithm
in their sub-populations.

The results in Table II for the Wine classification problem
shows that both CICC-NL-NetL and CICC-NL-LSP did not
perform better then standalone Neural Level (NL) results;
however, they did better then the other method employed. For
CICC-LSP-NetL the results outperformed both of the stan-
dalone methods. The results in Table II for the 4-bit problem

shows that both CICC-NL-NetL and CICC-NL-LSP did not
perform better then standalone Neural Level (NL) results;
however, they did better then the other method employed.
For CICC-LSP-NetL the results outperformed both of the
standalone methods.

The results in Table III for the Iris problem shows that both
CICC-NL-NetL and CICC-NL-LSP did not perform better
then standalone Neural Level (NL) results; however, they did
better then that of the other method employed. For CICC-LSP-
NetL the results outperformed both of the standalone methods.
The results in Table III for the Cancer problem shows that both
CICC-NL-NetL and CICC-NL-LSP did not perform better
then standalone Neural Level (NL) results; however, they did
better then that of the other method employed. For CICC-LSP-
NetL the results outperformed both of the standalone methods.

Lastly, the results in Table IV for the Heart problem shows
the exact same results as the previous four problems that
is, both CICC-NL-NetL and CICC-NL-LSP did not perform
better then standalone Neural Level (NL) results but did better
then that of the other method employed. For CICC-LSP-NetL
the results outperformed both of the standalone methods.

To evaluate the scalability performance of the algorithms,
we look at the number of hidden neurons used which also
reflects on robustness as we are interested to know the contri-
bution of the proposed algorithms irrespective of the neural
network topology as done previously [12], [19], [31]. The
CICC methods used here have shown low level scalability
characteristics when compared to the standalone methods. In
the Wine, Iris, Cancer and Heart problems, performances of
each method tends to deteriorate when the number of hidden
neurons are increased. This indicates that the nature of the
problem changes when more neurons are present in the hidden
layer and local search is not applicable. It also reflects bad
scalability although the success rates did not change much.

In the 4-Bit problem, increasing the number of hidden
neurons resulted in quite the opposite where in this case,
the results were evidently dependent on the nature of the
problem as it is different when compared to the real-word
classification problems. Table II shows that performances of
all methods on the 4-Bit problem gradually increased when
the number of hidden neurons were incremented.

The competitive island framework employed here takes
advantage of the best solutions of each decomposition method
at a particular point in evolution time to escape from local
minimum which is also credited with the good performance.
In the case of using a more promising method (neural level)
with methods of lesser performance (network and layer level),
the results of CICC show that overall performance is not better
then that of the original promising method. When using two
methods of close or similar standalone performance (network
and layer level), the overall performances were better then
both of the standalone methods.



V. CONCLUSIONS AND FUTURE WORK

Competition and collaboration between species are integral
processes for survival in nature. In this paper, we implemented
the competitive island cooperative co-evolution framework
on feed-forward neural networks for pattern classification
problems. We used two islands that employed different de-
composition methods resulting in three new competitive island
cooperative methods. The results show that the CICC methods
showed very good performance in comparison to standalone
problem decomposition methods.

The performance of the CICC method was also better in
general in terms of scalability given by different number
of hidden neurons of neurons. Furthermore, this enhanced
performance can be credited to the nature of the CICC
framework which takes advantage of the different degrees of
non-separability and diversities of the decomposition methods.
In contrast to conventional cooperative co-evolution, search is
less likely to be trapped in a local minimum on a particular
island due to collaborative features among all the islands that
share best solutions.

In subsequent work, the method employed in this study can
be extended by using more problem decomposition methods
which can provide a more diverse solution space to compare
in terms of competition and collaboration. Furthermore, it can
also be applied for real-time pattern classification problems
and could be extended for training other neural network
architectures.

REFERENCES

[1] C. G. Halpin, J. Skelhorn, and C. Rowe, “The relationship between
sympatric defended species depends upon predators’ discriminatory
behaviour,” PloS one, vol. 7, no. 9, p. e44895, 2012.

[2] G. Bella, A Bug’s Life: Competition Among Species Towards the
Environment, ser. Fondazione Eni Enrico Mattei Working Papers. Fon-
dazione Eni Enrico Mattei, 2007.

[3] C. D. Rosin and R. K. Belew, “New methods for competitive coevolu-
tion,” Evol. Comput., vol. 5, no. 1, pp. 1–29, Mar. 1997.

[4] M. Potter and K. De Jong, “A cooperative coevolutionary approach to
function optimization,” in Parallel Problem Solving from Nature PPSN
III, ser. Lecture Notes in Computer Science, Y. Davidor, H.-P. Schwefel,
and R. Mnner, Eds. Springer Berlin Heidelberg, 1994, vol. 866, pp.
249–257.

[5] M. A. Potter and K. A. De Jong, “Cooperative coevolution: An archi-
tecture for evolving coadapted subcomponents,” Evol. Comput., vol. 8,
no. 1, pp. 1–29, 2000.

[6] Y. Liu, X. Yao, Q. Zhao, and T. Higuchi, “Scaling up fast evolutionary
programming with cooperative coevolution,” in Evolutionary Computa-
tion, Proceedings of the 2001 Congress on, San Diego, CA, USA, Jun.
2001, pp. 1101–1108.

[7] R. Salomon, “Re-evaluating genetic algorithm performance under co-
ordinate rotation of benchmark functions. a survey of some theoretical
and practical aspects of genetic algorithms,” Biosystems, vol. 39, no. 3,
pp. 263 – 278, 1996.

[8] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary optimization
using cooperative coevolution,” Inf. Sci., vol. 178, no. 15, pp. 2985–
2999, 2008.

[9] L. M. Antonio and C. A. Coello Coello, “Use of cooperative coevolution
for solving large scale multiobjective optimization problems,” 2013
IEEE Congress on Evolutionary Computation, pp. 2758–2765, 2013.

[10] N. Garcia-Pedrajas, C. Hervas-Martinez, and J. Munoz-Perez, “COV-
NET: a cooperative coevolutionary model for evolving artificial neural
networks,” IEEE Transactions on Neural Networks, vol. 14, no. 3, pp.
575–596, 2003.

[11] N. Garca-Pedrajas, C. Hervas-Martinez, and J. Munoz-Perez, “Multi-
objective cooperative coevolution of artificial neural networks (multi-
objective cooperative networks),” Neural Networks, vol. 15, pp. 1259–
1278, 2002.

[12] R. Chandra, M. Frean, and M. Zhang, “An encoding scheme for
cooperative coevolutionary feedforward neural networks,” in AI 2010:
Advances in Artificial Intelligence, ser. Lecture Notes in Computer
Science, J. Li, Ed. Springer Berlin / Heidelberg, 2010, vol. 6464,
pp. 253–262.

[13] R. Chandra, “Memetic cooperative coevolution of elman recurrent neural
networks,” Soft Comput., vol. 18, no. 8, pp. 1549–1559, 2014.

[14] F. Gomez and R. Mikkulainen, “Incremental evolution of complex
general behavior,” Adapt. Behav., vol. 5, no. 3-4, pp. 317–342, 1997.

[15] F. Gomez, J. Schmidhuber, and R. Miikkulainen, “Accelerated neural
evolution through cooperatively coevolved synapses,” J. Mach. Learn.
Res., vol. 9, pp. 937–965, 2008.

[16] R. Chandra and M. Zhang, “Cooperative coevolution of Elman recurrent
neural networks for chaotic time series prediction,” Neurocomputing,
vol. 186, pp. 116 – 123, 2012.

[17] R. Chandra, “Competitive two-island cooperative coevolution for train-
ing Elman recurrent networks for time series prediction,” in International
Joint Conference on Neural Networks (IJCNN), Beijing, China, July
2014, pp. 565–572.

[18] S. Chand and R. Chandra, “Multi-objective cooperative coevolution
of neural networks for time series prediction,” in International Joint
Conference on Neural Networks (IJCNN), Beijing, China, July 2014,
pp. 190–197.

[19] R. Chandra, M. Frean, and M. Zhang, “On the issue of separability for
problem decomposition in cooperative neuro-evolution,” Neurocomput-
ing, vol. 87, pp. 33–40, 2012.

[20] R. Chandra, M. Frean, M. Zhang, and C. W. Omlin, “Encoding sub-
components in cooperative co-evolutionary recurrent neural networks,”
Neurocomputing, vol. 74, no. 17, pp. 3223 – 3234, 2011.

[21] C. Goh, K. Tan, D. Liu, and S. Chiam, “A competitive and cooperative
co-evolutionary approach to multi-objective particle swarm optimization
algorithm design,” European Journal of Operational Research, vol. 202,
no. 1, pp. 42 – 54, 2010.

[22] C.-K. Goh and K. C. Tan, “A competitive-cooperative coevolutionary
paradigm for dynamic multiobjective optimization,” Evolutionary Com-
putation, IEEE Transactions on, vol. 13, no. 1, pp. 103 –127, Feb. 2009.

[23] R. Chandra, M. Frean, and M. Zhang, “Modularity adaptation in
cooperative coevolution of feedforward neural networks,” in Proceedings
of the International Joint Conference on Neural Networks (IJCNN), San
Jose, CA, USA, Jul. 2011, pp. 681–688.

[24] ——, “Adapting modularity during learning in cooperative co-
evolutionary recurrent neural networks,” Soft Computing - A Fusion of
Foundations, Methodologies and Applications, vol. 16, no. 6, pp. 1009–
1020, 2012.

[25] M. Shi, “Natural vs. unnatural decomposition in cooperative coevolu-
tion,” in Advanced Intelligent Computing Theories and Applications.
With Aspects of Artificial Intelligence. Springer, 2012, pp. 138–147.

[26] F. van den Bergh and A. Engelbrecht, “A cooperative approach to particle
swarm optimization,” Evolutionary Computation, IEEE Transactions on,
vol. 8, no. 3, pp. 225–239, Jun. 2004.

[27] Y.-j. Shi, H.-f. Teng, and Z.-q. Li, “Cooperative co-evolutionary differ-
ential evolution for function optimization,” in Advances in Natural Com-
putation, ser. Lecture Notes in Computer Science, L. Wang, K. Chen,
and Y. S. Ong, Eds. Springer Berlin / Heidelberg, 2005, vol. 3611, pp.
1080–1088.

[28] D. Ortiz-Boyer, C. HerváMartı́nez, and N. Garcı́a-Pedrajas, “CIXL2:
a crossover operator for evolutionary algorithms based on population
features,” J. Artif. Int. Res., vol. 24, pp. 1–48, 2005.

[29] R. Chandra, “Competition and collaboration in cooperative coevolution
of elman recurrent neural networks for time series prediction,” in IEEE
TRANS. On Neural Networks and Learning Systems.

[30] A. Asuncion and D. Newman, “UCI machine learning repository,”
2007. [Online]. Available: http://archive.ics.uci.edu/ml/datasets.html

[31] R. Chandra, M. R. Frean, and M. Zhang, “Crossover-based local search
in cooperative co-evolutionary feedforward neural networks,” Appl. Soft
Comput., vol. 12, no. 9, pp. 2924–2932, 2012.

http://archive.ics.uci.edu/ml/datasets.html

