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Abstract – This paper presents an approach to digit 

recognition using single layer neural network classifier with 

Principal Component Analysis (PCA). The handwritten digit 

recognition is an important area of research as there are so many 

applications which are using handwritten recognition and it can 

also be applied to new application. There are many algorithms 

applied to this computer vision problem and many more 

algorithms are continuously developed on this to make the 

handwritten recognition classify digits more accurately with less 

computation involved. The proposed model in this paper aims to 

reduce the features to reduce computation requirements and 

successfully classify the digit into 10 categories (0 to 9). The 

system designed consists of backward propagation (BP) neural 

network and is trained and tested on the MNIST dataset of 

handwritten digit. The proposed system was able to obtain 

98.39% accuracy on the MNIST 10,000 test dataset. The 

Principal Component Analysis (PCA) is used for feature 

extraction to curtail the computational and training time and at 

the same time produce high accuracy. It was clearly observed 

that the training time is reduced by up to 80% depending on the 

number of principal component selected. We will consider not 

only the accuracy, but also the training time, recognition time 

and memory requirements for entire process. Further, we 

identified the digits which were misclassified by the algorithm. 

Finally, we generate our own test dataset and predict the labels 

using this system. 

 Keywords – Neural Network, PCA, Digit Recognition 

I.  INTRODUCTION  

Handwriting recognition has become one of the most 
interesting directions in solving computer vision problem in the 
field of image processing and pattern recognition. This 
technique is used in many potential applications such as bank 
cheque analysis, US post mail sorting [12] and handwritten 
form processing [2]. There are many approaches has been 
applied to this with high accuracy [1, 2, 3, 4, 5, 6, 7], however 
there are rooms for enhancement. We got the handwritten 
recognition idea from Kaggle competition 
(https://www.kaggle.com). Kaggle is a competition where we 
can take part and see where our algorithm stands compared to 
other researchers. 

In [3], the proposed system uses multiple feature extraction 
techniques and multiple layer perception (MLP) neural 
networks achieved a good accuracy rate. The feature extraction 
methods used were multi zoning modifies edge [4], structure 
characteristics [7], image projection [5], concavities 

measurements [8] and MAT-based gradient directional features 
[5].  

LeCun and his team, in [9] compare several classifiers 
applied on handwritten digit recognition, from which boosted 
LeNet 4 gave the best accuracy of 99.3%. Boosted LeNet 4 
model combined multiple LeNet classifiers which had multiple 
convolution layers neural network. 

Different classifiers and combination methods were used 
with PCA to reduce features for faster training time. Our goal 
is to use computationally less expensive neural network and 
PCA with minimum dimension for digit recognition to improve 
the accuracy optioned from [1]. The accuracy for this system 
was 91.20% using K=64 input features, 35 hidden layers nodes 
and 4 output neurons. 

The MNIST dataset of handwritten digit with labels 0 to 9 
was used for training and testing. The dataset has 60000 
training set and 10000 test set images. Each image is of size 28 
x 28 pixel grayscale image (0 – 255). There is a general 
problem in prediction of similar digits such as 5 and 9, 1 and 7 
and others. The handwriting of individual personnel can also 
influence the prediction as a digit can be written in different 

ways, such as digit ‘5’ is written as ‘ ’, ‘5’, ‘5’ or ‘ ’. 

In this paper we used single layer neural network classifier 
with PCA as shown in Fig. 1 to extract the features and train 
using back-propagation algorithm. 

 

 

 

     

 

 

 

 

 

Fig. 1.  Overview of proposed model 

 

    This paper is organized as follow: section II briefly 

discusses the data processing techniques used. The proposed 

classifier with PCA is demonstrated in section III. Section IV 

shows the training of the classifier and section V explains how 

the experiments were carried out. Followed by results, 

discussion and concluded with future directions.  

PCA 

Training Dataset: 784 features 

x 60,000 samples 

Single Layer Neural Network 

Compressed 66 features as inputs 

https://www.kaggle.com/


II.  DATA PREPROCESSING 

The digit may be written in different ways, therefore the 

data needs to be normalized to eliminate noise in the data and 

get all the dataset in a fixed format. A portion of training 

dataset is shown in Fig. 2.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2. Sample of normalized training data loaded in MATLAB 

 

A.  Normalization of MNIST Dataset 

 The MNIST dataset has 60000 training samples and 10000 
testing examples which was used for training and testing the 
model. Each sample is normalized and centered in 28 x 28 
pixel grayscale image resulting in a total of 784pixel per image 
and each pixel value ranged from 0 to 255. After 
normalization, each pixel value range from 0 to 1. 

B.  Creating Test Samples using Paint Application 

In addition to MNIST dataset, I have created my own test 
dataset which includes twenty test samples using the paint 
application. Different digits were written on 28 x 28 pixel 
image using a black color with a white as the background. This 
was to test if the trained algorithm could predict actual 
handwritten digit on paint application which required 
preprocessing of the digit image.  

1) Grayscaling 

The images were loaded in MATLAB and 32-bit color 
images were transformed into grayscale image of 28 x 28 pixel 
similar to the training set format. The images were further 
normalized by simply dividing each pixel by 255 resulted in 
pixel between 0 to 1. The transformation of image from paint 
application to grayscale image in MATLAB is shown in Fig. 3. 

 

 

 

 

 

 

 

Fig. 3.  Original Paint data to normalized grayscale data in 

MATLAB       

III. PROPOSED CLASSIFIER 

    The single-layer neural network classifier in Fig. 4 has been 

implemented as neural network with three layers (one input, 

one hidden and one output layer). The resulting output from 

PCA shown in Fig. 1 is the input of the neural network which 

is 66 input neurons. There are 99 nodes in hidden layer. We 

chose the neurons based on the experiments with different 

hidden nodes and selecting the nodes which gave the highest 

cross validation (cv) accuracy. Forward propagation is used to 

classify the digit with respect to the output layer neurons. The 

output layer consist ten nodes, each corresponding to ten digits 

(0 to 9). The ten neuron’s output is calculated and classified 

digit corresponds to neuron with highest output value (highest 

probability).  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Proposed single layer network 

 

A. Feature Extraction Using Principal Component Analysis 

     Principal component analysis (PCA) is fundamental 

multivariate data analysis method which is used in various 

area in neural network and machine learning. It is used to 

reduce the dimensionality of the existing dataset. PCA can be 

applied to the digit images by projecting the item onto smaller 

dimension. 

 
1) PCA Algorithm 

The PCA algorithm can be implemented in the 
following steps [13]: 

i. Calculate the mean for each dimension and subtract 
each training sample with the mean as shown in 
equations 1 and 2 respectively. 
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ii. Find the covariance matrix and get the eigenvector (V) and 
eigenvalue (D) as in equation 3 and 4. 
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iii. Sort the eigenvector and eigenvalue and select the Kth most 
significant eigenvectors. Project data X into K dimensional by 
multiplying X with top K eigenvectors. 

                    * (1: )Z X V K                           (5) 

 

where u[m] is the mean of training set, X is the sample of 

training set, N is number of sample acquired, C is the 

covariance matrix, V is the eigenvector of C and  D is the 

eigenvalue of C, K is the value of principal component and Z 

is the eigenvector of X. 

 

IV. TRAINING THE CLASSIFIER USING BACK PROPAGATION 

ALGORITHM 

   Artificial Neural Network composed simple neurons 

connected to each other with its own connection strength 

whose function is determined by network structure. This is 

used for different problems such as in health application for 

analyzing the heart disease in pattern recognition. [11] We 

trained the neural network using back propagation algorithm 

where the learning takes place by the adjustments of randomly 

initialized weights such that the classifier error is minimized. 

In back-propagation neural network, the learning takes place 

in two parts. First, a training sample is presented to the input 

layer. The network propagates from layer to layer until output 

pattern is obtained in output layer. If the actual output and 

desired pattern is different, then the error is calculated. The 

error is propagated backwards and weights are modified as the 

error is propagated.  

A. Learning using Back Propagation 

    We initialized the weights randomly between -0.5 to 0.5. 

The uni-polar sigmoid activation function shown in equation 6 

is selected comparing the accuracy rate of different function in  

[10]. The actual output of the neurons in hidden layer and 

output layer is calculated by activation function using forward 

propagation. The error gradient is calculated using the actual 

output and the desired output. The error is propagated 

backwards in the network simultaneously calculating weight 

correction. Finally, all the weights are updated and this is 

repeated for each training sample in all epochs. The error 

gradient is minimized in each iteration using fmincg function 

of MATLAB. 
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where Z is the input value in activation function,  n is the 

number of neurons, Xi is value ith neuron, Wi is ith weight 

isosiated to the neuron is and     is threshold applied to neuron. 

V. EXPERIMENTATION 

A. MNIST Dataset 

   The dataset originally consist of 784 features measured over 

60000 training set and 10000 test set. We compressed the 

number of features to 66 features using PCA which was used 

as inputs for the neural network. Since the output has 10 

nodes, the dataset has labels from 0 to 9. The distribution of 

training sample of 10 digits is shown in table I number of each 

digit was there in the dataset.  

 

TABLE I 

NUMBER OF EACH DIGIT IN THE DATASET 

 

Digit No. Training Sample No. Test Sample 

0 5923 980 

1 6742 1135 

2 5958 1032 

3 6131 1010 

4 5842 982 

5 5421 892 

6 5918 958 

7 6265 1028 

8 5851 974 

9 5949 1009 

Total 60000 10000 

 

B. Tools Used For Implementation 

     MATLAB was extensively used for coding due to its 

advance libraries of the mathematic functions. Due to large 

dataset, high memory was required. Each pixel requires 

20bytes so for training set of 60,000 x 784 is equal to 942MB 

of memory is required for training set and a total 157MB for 

test set, resulting more than 1GB memory required to load the 

dataset on MATLAB followed by all other training and testing 

process. 

C. 10-Fold Cross-Validation 

     Validation techniques are important phase in training 

fundamental problems in pattern recognition for model 

selection and performance estimation. This is used to prevent 

overfitting or underfitting of the model. We choose 10-fold 

cross-validation method used for training and testing our 

different model and picking the model with lowest average 

error. The advantage of K-Fold cross validation is that all the 

samples in the dataset are eventually used for both training 

and testing. 
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  Fig. 5    10-fold dataset (9 for training and 1 for testing) 

     

We divided the 60, 000 training dataset into 10 subsets, each 

set has 6,000 examples as shown in Fig. 5. For each cross-

validation experiment we used one subset as the test set and 

remaining as training set for all 10 different folds as captured 

in Table II. 

 
1) Average Error Rate 

    After calculating all errors from the model in 10-fold cross-
validation for 1 experiment, the average error rate was 
calculated using the formula (equation 8) where K is number of 
fold, 10 in this case and Ei is error occurred in each of the ith 
fold testing.  
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D. Principal Component Analysis 

     PCA was used to reduce dimension from 784 to lower 

value ease computation. After executing PCA on the dataset, 

we found that 281 features retained over 99% of variance, 103 

features retained 95% of the variance and 53 features retained 

90% of the variance. The Fig. 6 shows the percentage of 

variance retained by different numbers of principal 

components. 

 

 
 

Fig. 6. Variance retained after PCA on training data 

E. Training and Testing phase 

     There were multiple training sets to find best different 

parameters. The training was both done with and without PCA 

to compare the difference in the time taken with respect to 

accuracy rate. The general procedure taken for training in this 

paper is captured below. The training and testing procedure 

used in this paper is captured below.  

 
1) Training Phase 

     The training of the proposed algorithm was done on 60,000 

MNIST dataset following the steps in table II. 

 

TABLE II 

TRAINING MNIST DATASET SETS 

 

1. For each experiment with different parameters. 

2. For each Kth-fold cross validation (see Table II) 

3. We initialize the random weights and set other 

parameters of the classifier which are hidden neurons 

(h), iteration (i) and number of inputs (K)  from PCA 

4. A sample, Xi from 54,000 cross-validation (cv) 

training sample is passed through the classifier  

5. The classifier gives result of output of that sample 

using the activation function. 

6. If the output is different from the desired output, then 

the error gradient is calculated.  

7. The error is propagated backwards in the network 

update the weights with respect to the error. 

8. Steps 4 to 7 is repeated for all 54,000 cv training 

samples and the weights are updated according the 

error. 

9. The training runs for different epochs based on the 

iteration i for this experiment, minimizing the 

classification error. 

10. After all epochs, the forward propagation is taken to 

classify the 6,000 test sample  

11. Calculated the accuracy and error rate in classifying 

in step 10. 

12. Repeated step 2 to 11 for all 10 folds, where one Kth 

subset of 6,000 samples is test data and remaining 

54,000 samples are training data. 

13. The average cv error of 10-folds is calculated and all 

parameters of this model were saved. 

14. Steps 1 to 13 are carried out for different experiments 

with different h, i and K values, such that we get 

maximum accuracy with minimum computation. 

15. After all experiments, results of the models were 

compared and model with best result was chosen. 

 
     The first set of training was done with model without using 

PCA for different number of epochs and the number for 

neurons in the hidden layer was be obtained from the rule: 
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Where m and n are the number of neurons in the input and 

output layers respectively. 

 
2)    Testing Phase 

     The testing of the proposed algorithm was done as follows: 

 



TABLE III 

TESTING PROCEDURE 

  

1. The model with best accuracy rate was chosen for 

testing in 3 set of different test samples. The MNIST 

10,000 test set, 30 paint digit images and in Kaggle 

competition with 28,000 test data with unknown 

labels (https://www.kaggle.com).  

2. The model was used to predict the digit 0-9 using the 

test set from three different source as in 1.  

3. The predicted digit is compared with the actual digit 

to get the classification accuracy for all the test 

samples in MNIST and paint dataset. For Kaggle test 

set, the predicted 28,000 digits are uploaded on the 

on Kaggle and the accuracy result is given back. 

 

F. Training Without PCA 

     The first experiment was without PCA which followed the 

same procedure as discussed in training phase, only the input 

nodes having all 784 pixel inputs. The single layer neural 

network model has 784 input nodes, 397 hidden nodes and 10 

output nodes, with 0.1 learning rate and 2 as regularization 

lambda value. The following table IV shows the accuracy and 

time taken for different iteration. 

 

TABLE IV 

RESULT OF MODEL WITHOUT PCA 

 

Iteration Average CV Accuracy (%) Time Taken (second) 

200 97.433 9632.46449 

400 98.003 18544.6042 

600 98.105 27256.2739 

800 98.113 35923.0287 

1000 98.274 45011.5432 

 

G. Training Neural Network With PCA 

     The second experiment was using neural network with 

Principal Component Analysis (PCA). The selection of 

number of principal component (K) which becomes the 

number of input nodes was determined with this training. The 

number of hidden number is calculated using equation 9 for 

different K values. The number of epochs is 100, learning rate 

and other parameters are same for each K principal 

component. The result is captured in Fig. 7, which shows the 

average cross validation accuracy versus the number of 

principal components. 

 

H. Training Further with Best Principal Components (K) 

     After finding the number principal component with respect 

to the accuracy from second experiment, the three best K was 

chosen which gave the maximum average cross validation 

accuracy in cross validation. These models were further 

trained with different epochs and hidden nodes as shown in 

Table V. 

 

 
 

Fig. 7. Average cross validation accuracy vs number of 

principal component 

 

 

TABLE V 

THE RESULT OF NEURAL NETWORK WITH 

DIFFERENT K PRINCIPALS AND PARAMETERS 

 

 
From the result, the model with K = 66, 1000 epochs, 99 

hidden nodes is selected for testing on the MNIST’s test data. 
Comparing the time taken to train the model with or without 
PCA, it is seen that using PCA the computation time reduces 
by 39.429% getting almost identical accuracy. If different K 
vale value is chosen then this comparison may differ. 

Using the model selected, it was trained using the 60,000 
training data and tested with 10,000 test data as the result 
shown in result section. To get best model submitted on 

K Epochs 
Hidden 

nodes 

Average cv 

Accuracy 

Time 

Taken 

52 500 31 96.51 5274.591 

52 1000 31 96.95 9962.74 

52 1000 70 97.97 24713.928 

52 1000 90 98.02 27397.288 

66 500 38 96.96 6250.179 

66 1000 38 97.15 13109.53 

66 1000 85 98.18 25847.239 

66 1000 90 97.93 26464.829 

66 1000 99 98.27 27273.124 

77 500 44 97.05 7411.033 

77 1000 44 97.19 14345.86 

77 1000 70 98.01 26064.834 

77 1000 90 98.15 31576.247 

77 1000 100 98.18 31576.247 

https://www.kaggle.com/


Kaggle, we also tried training the model by increasing the 
hidden nodes to large number which are 200, 300, and 500 and 
tested it with 10,000 test samples where we obtained the 
accuracy 98.23%, 98.33% and 98.67% respectively. We were 
able to do all these long experiments as we had powerful server 
to run all our trainings.   

VI. RESULT 

     After cross validation, the algorithms with and without 

PCA with best accuracy were selected for testing and 

comparison. These models were trained using the 60,000 

MNIST training sample and then tested using the 10,000 test 

samples. The algorithms are: 

A. Neural Network Without PCA 

     The number of input nodes is 784 as there are 784 features, 

397 in the hidden layer and 10 output nodes in output layer. 

The learning rate is 0.01 and regularization lambda is 2. The 

time taken to train the model is 27109.652seconds. 

B. Neural Network With PCA 

     This is the proposed algorithm for this paper. The 

minimum principal component which gave the maximum 

accuracy was selected, that is 66 principal comments which 

retain about 92% of variance (see Fig. 6). Therefore, the 

number of input nodes is 66 based on principal component, 99 

nodes in the hidden layer and 10 output nodes in output layer. 

The learning rate is 0.01 and regurgitation lambda is 2. The 

time taken to train the model is 4223.010seconds. The results 

of these 2 algorithms are shown in Table VI. 

 

TABLE VI 

THE COMPARISON OF NEURAL NETWORK RESULTS 

WITH AND WITHOUT PCA 

 

Digit 

NN without PCA (784-

397-10) 

PCA + 

ANN 

0 99.39% 99.29% 

1 99.12% 99.21% 

2 98.16% 98.16% 

3 98.51% 98.71% 

4 98.17% 97.96% 

5 97.09% 97.98% 

6 98.43% 98.64% 

7 98.25% 98.15% 

8 97.95% 98.15% 

9 97.82% 97.62% 

Total 98.29% 98.39% 

 
     It is seen that using PCA with neural network, the 

computation is reduced by about 80% in this case and it would 

reduce further or less depending on the number of principal 

component selected. The proposed model has better accuracy 

rate compared to model without PCA. 

C. Testing Using Paint Digit Image 

     The proposed algorithm was then used to predict 30 paint 

digit samples. The algorithms were able to successfully 

classify 96.7% of the test samples. 

 

D. Testing in Kaggle Digit Recognition Completion 

     The proposed algorithm is also tested using the kaggle’s 

testing dataset. The dataset consist of 28,000 testing images 

with 784 features (28 x 28 pixels). This is independent images 

whose labels are not given. Using the proposed algorithm, we 

classified each of the 28,000 samples and the predicted 

label/output for each sample was placed in the csv file with 

each row corresponding to each sample (28,000 rows). The 

csv file was uploaded on Kaggle and instant accuracy was 

given and it got ranked with other competitors in the 

leaderboard. Our proposed algorithm got 98.286% accuracy 

and is ranked 48 out of 384 competitors as shown in Fig. 8. 

 

 
 

Fig. 8.   Ranking obtained from Kaggle Digit Recognition 

competition 

VII. DISCUSSION 

     The proposed system had 98.4% accuracy, which means 

1.6% is misclassified image by the proposed algorithm which 

is shown in Fig. 9. On the list, some reasons for 

misclassification were made due to unclear way of writing, 

segmentation problem or noise in the data. To increase 

recognition further research is needed on ambiguous digits. 

There are some digits which are not misclassified but can be 

easily recognized by human, which means that the algorithm 

can be improved. Some improvement might be by adding new 

features, use feature extractions technique to remove noise 

make it clear for algorithm to classify.  

 

 
 

Fig. 9   Misclassified Digits. The top labeled digit is actual 

digit and the bottom labeled digit is predicted digit. 

           
The proposed system has many computational advantages 

as it doesn’t require must storage and done the training in 5 
times faster than using neural network on its own. This means 



that the system can be trained using less powerful machine. 
The selection of number of principal component to be used in 
the model is a critical decision as this will also reflect on the 
accuracy based on the variance retained. We will expand this 
system in future to use genetic algorithm to reduce feature 
obtaining the best feature required to obtain the maximum 
accuracy. 

The following table VII compared the proposed algorithm’s 
accuracy with other algorithms used for digit recognition using 
Neural Networks. 

TABLE VII 

THE COMPARISON OF OTHER NEURAL NETWORK 

RESULTS WITH PROPOSED ALGORITHM 

 

Algorithm Accuracy 

ANN with PCA (K=64, h= 35) [1] 91.20% 

Boosted LeNet 4 [9] 99.3% 

ANN with PCA (Proposed) 98.39% 

VIII. CONCLUSION 

In this paper, a method to recognize handwritten digit by 
using single layer neural network and PCA was proposed. The 
aim was to get maximum accuracy on digit recognition and to 
reduce the features for ease computation. This was achieved by 
the algorithm with 66 principal components giving 98.39% 
accuracy on MNIST test dataset. 

Some misclassified digits are ambiguous either by unclear 
writing or segmentation problem. This can be further improved 
by increasing the feature and to use multiply feature extraction 
techniques. A combination of classifiers can also be used but 
we want the computation to be minimized. 

More features extraction methods can be used to select the 
best feature required for digit recognition. In future, we will 
extend this system to use Genetic Algorithm to select the best 
features to obtained maximum accuracy in handwritten digit 
recognition, a computer vision problem. 
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