
Digit Recognition Using Single Layer Neural

Network with Principal Component Analysis

Vineet Singh, and Sunil Pranit Lal
School of Computing Science, Information System and Mathematics,

The University of the South Pacific,

Laucala Bay, Suva, Fiji

{vineet.singh, sunil.lal}@usp.ac.fj

Abstract – This paper presents an approach to digit

recognition using single layer neural network classifier with

Principal Component Analysis (PCA). The handwritten digit

recognition is an important area of research as there are so many

applications which are using handwritten recognition and it can

also be applied to new application. There are many algorithms

applied to this computer vision problem and many more

algorithms are continuously developed on this to make the

handwritten recognition classify digits more accurately with less

computation involved. The proposed model in this paper aims to

reduce the features to reduce computation requirements and

successfully classify the digit into 10 categories (0 to 9). The

system designed consists of backward propagation (BP) neural

network and is trained and tested on the MNIST dataset of

handwritten digit. The proposed system was able to obtain

98.39% accuracy on the MNIST 10,000 test dataset. The

Principal Component Analysis (PCA) is used for feature

extraction to curtail the computational and training time and at

the same time produce high accuracy. It was clearly observed

that the training time is reduced by up to 80% depending on the

number of principal component selected. We will consider not

only the accuracy, but also the training time, recognition time

and memory requirements for entire process. Further, we

identified the digits which were misclassified by the algorithm.

Finally, we generate our own test dataset and predict the labels

using this system.

 Keywords – Neural Network, PCA, Digit Recognition

I. INTRODUCTION

Handwriting recognition has become one of the most
interesting directions in solving computer vision problem in the
field of image processing and pattern recognition. This
technique is used in many potential applications such as bank
cheque analysis, US post mail sorting [12] and handwritten
form processing [2]. There are many approaches has been
applied to this with high accuracy [1, 2, 3, 4, 5, 6, 7], however
there are rooms for enhancement. We got the handwritten
recognition idea from Kaggle competition
(https://www.kaggle.com). Kaggle is a competition where we
can take part and see where our algorithm stands compared to
other researchers.

In [3], the proposed system uses multiple feature extraction
techniques and multiple layer perception (MLP) neural
networks achieved a good accuracy rate. The feature extraction
methods used were multi zoning modifies edge [4], structure
characteristics [7], image projection [5], concavities

measurements [8] and MAT-based gradient directional features
[5].

LeCun and his team, in [9] compare several classifiers
applied on handwritten digit recognition, from which boosted
LeNet 4 gave the best accuracy of 99.3%. Boosted LeNet 4
model combined multiple LeNet classifiers which had multiple
convolution layers neural network.

Different classifiers and combination methods were used
with PCA to reduce features for faster training time. Our goal
is to use computationally less expensive neural network and
PCA with minimum dimension for digit recognition to improve
the accuracy optioned from [1]. The accuracy for this system
was 91.20% using K=64 input features, 35 hidden layers nodes
and 4 output neurons.

The MNIST dataset of handwritten digit with labels 0 to 9
was used for training and testing. The dataset has 60000
training set and 10000 test set images. Each image is of size 28
x 28 pixel grayscale image (0 – 255). There is a general
problem in prediction of similar digits such as 5 and 9, 1 and 7
and others. The handwriting of individual personnel can also
influence the prediction as a digit can be written in different

ways, such as digit ‘5’ is written as ‘ ’, ‘5’, ‘5’ or ‘ ’.

In this paper we used single layer neural network classifier
with PCA as shown in Fig. 1 to extract the features and train
using back-propagation algorithm.

Fig. 1. Overview of proposed model

 This paper is organized as follow: section II briefly

discusses the data processing techniques used. The proposed

classifier with PCA is demonstrated in section III. Section IV

shows the training of the classifier and section V explains how

the experiments were carried out. Followed by results,

discussion and concluded with future directions.

PCA

Training Dataset: 784 features

x 60,000 samples

Single Layer Neural Network

Compressed 66 features as inputs

https://www.kaggle.com/

II. DATA PREPROCESSING

The digit may be written in different ways, therefore the

data needs to be normalized to eliminate noise in the data and

get all the dataset in a fixed format. A portion of training

dataset is shown in Fig. 2.

Fig.2. Sample of normalized training data loaded in MATLAB

A. Normalization of MNIST Dataset

 The MNIST dataset has 60000 training samples and 10000
testing examples which was used for training and testing the
model. Each sample is normalized and centered in 28 x 28
pixel grayscale image resulting in a total of 784pixel per image
and each pixel value ranged from 0 to 255. After
normalization, each pixel value range from 0 to 1.

B. Creating Test Samples using Paint Application

In addition to MNIST dataset, I have created my own test
dataset which includes twenty test samples using the paint
application. Different digits were written on 28 x 28 pixel
image using a black color with a white as the background. This
was to test if the trained algorithm could predict actual
handwritten digit on paint application which required
preprocessing of the digit image.

1) Grayscaling

The images were loaded in MATLAB and 32-bit color
images were transformed into grayscale image of 28 x 28 pixel
similar to the training set format. The images were further
normalized by simply dividing each pixel by 255 resulted in
pixel between 0 to 1. The transformation of image from paint
application to grayscale image in MATLAB is shown in Fig. 3.

Fig. 3. Original Paint data to normalized grayscale data in

MATLAB

III. PROPOSED CLASSIFIER

 The single-layer neural network classifier in Fig. 4 has been

implemented as neural network with three layers (one input,

one hidden and one output layer). The resulting output from

PCA shown in Fig. 1 is the input of the neural network which

is 66 input neurons. There are 99 nodes in hidden layer. We

chose the neurons based on the experiments with different

hidden nodes and selecting the nodes which gave the highest

cross validation (cv) accuracy. Forward propagation is used to

classify the digit with respect to the output layer neurons. The

output layer consist ten nodes, each corresponding to ten digits

(0 to 9). The ten neuron’s output is calculated and classified

digit corresponds to neuron with highest output value (highest

probability).

Fig. 4. Proposed single layer network

A. Feature Extraction Using Principal Component Analysis

 Principal component analysis (PCA) is fundamental

multivariate data analysis method which is used in various

area in neural network and machine learning. It is used to

reduce the dimensionality of the existing dataset. PCA can be

applied to the digit images by projecting the item onto smaller

dimension.

1) PCA Algorithm

The PCA algorithm can be implemented in the
following steps [13]:

i. Calculate the mean for each dimension and subtract
each training sample with the mean as shown in
equations 1 and 2 respectively.

1

1
[]

N

ii
u m

N
X

  (1)

 []X X u m  (2)

1

2

3

66

1

3

99

4

1

2

3

10

X1

X2

X3

X66

Y1

Y2

Y3

Y10

Input Layer Hidden Layer Output Layer



ii. Find the covariance matrix and get the eigenvector (V) and
eigenvalue (D) as in equation 3 and 4.

1

* TC X X
N

 (3)

1 *V CV D  (4)

iii. Sort the eigenvector and eigenvalue and select the Kth most
significant eigenvectors. Project data X into K dimensional by
multiplying X with top K eigenvectors.

 * (1:)Z X V K (5)

where u[m] is the mean of training set, X is the sample of

training set, N is number of sample acquired, C is the

covariance matrix, V is the eigenvector of C and D is the

eigenvalue of C, K is the value of principal component and Z

is the eigenvector of X.

IV. TRAINING THE CLASSIFIER USING BACK PROPAGATION

ALGORITHM

 Artificial Neural Network composed simple neurons

connected to each other with its own connection strength

whose function is determined by network structure. This is

used for different problems such as in health application for

analyzing the heart disease in pattern recognition. [11] We

trained the neural network using back propagation algorithm

where the learning takes place by the adjustments of randomly

initialized weights such that the classifier error is minimized.

In back-propagation neural network, the learning takes place

in two parts. First, a training sample is presented to the input

layer. The network propagates from layer to layer until output

pattern is obtained in output layer. If the actual output and

desired pattern is different, then the error is calculated. The

error is propagated backwards and weights are modified as the

error is propagated.

A. Learning using Back Propagation

 We initialized the weights randomly between -0.5 to 0.5.

The uni-polar sigmoid activation function shown in equation 6

is selected comparing the accuracy rate of different function in

[10]. The actual output of the neurons in hidden layer and

output layer is calculated by activation function using forward

propagation. The error gradient is calculated using the actual

output and the desired output. The error is propagated

backwards in the network simultaneously calculating weight

correction. Finally, all the weights are updated and this is

repeated for each training sample in all epochs. The error

gradient is minimized in each iteration using fmincg function

of MATLAB.

Ze

xg



1

1
)(

 (6)




i

n

i

iWXZ
1 (7)

where Z is the input value in activation function, n is the

number of neurons, Xi is value ith neuron, Wi is ith weight

isosiated to the neuron is and is threshold applied to neuron.

V. EXPERIMENTATION

A. MNIST Dataset

 The dataset originally consist of 784 features measured over

60000 training set and 10000 test set. We compressed the

number of features to 66 features using PCA which was used

as inputs for the neural network. Since the output has 10

nodes, the dataset has labels from 0 to 9. The distribution of

training sample of 10 digits is shown in table I number of each

digit was there in the dataset.

TABLE I

NUMBER OF EACH DIGIT IN THE DATASET

Digit No. Training Sample No. Test Sample

0 5923 980

1 6742 1135

2 5958 1032

3 6131 1010

4 5842 982

5 5421 892

6 5918 958

7 6265 1028

8 5851 974

9 5949 1009

Total 60000 10000

B. Tools Used For Implementation

 MATLAB was extensively used for coding due to its

advance libraries of the mathematic functions. Due to large

dataset, high memory was required. Each pixel requires

20bytes so for training set of 60,000 x 784 is equal to 942MB

of memory is required for training set and a total 157MB for

test set, resulting more than 1GB memory required to load the

dataset on MATLAB followed by all other training and testing

process.

C. 10-Fold Cross-Validation

 Validation techniques are important phase in training

fundamental problems in pattern recognition for model

selection and performance estimation. This is used to prevent

overfitting or underfitting of the model. We choose 10-fold

cross-validation method used for training and testing our

different model and picking the model with lowest average

error. The advantage of K-Fold cross validation is that all the

samples in the dataset are eventually used for both training

and testing.

1 2 3 4 5 6 7 8 9 10

Test

Test Set Training Set

 Fig. 5 10-fold dataset (9 for training and 1 for testing)

We divided the 60, 000 training dataset into 10 subsets, each

set has 6,000 examples as shown in Fig. 5. For each cross-

validation experiment we used one subset as the test set and

remaining as training set for all 10 different folds as captured

in Table II.

1) Average Error Rate

 After calculating all errors from the model in 10-fold cross-
validation for 1 experiment, the average error rate was
calculated using the formula (equation 8) where K is number of
fold, 10 in this case and Ei is error occurred in each of the ith
fold testing.

1

1 K

ii
E E

K 
 

 (8)

D. Principal Component Analysis

 PCA was used to reduce dimension from 784 to lower

value ease computation. After executing PCA on the dataset,

we found that 281 features retained over 99% of variance, 103

features retained 95% of the variance and 53 features retained

90% of the variance. The Fig. 6 shows the percentage of

variance retained by different numbers of principal

components.

Fig. 6. Variance retained after PCA on training data

E. Training and Testing phase

 There were multiple training sets to find best different

parameters. The training was both done with and without PCA

to compare the difference in the time taken with respect to

accuracy rate. The general procedure taken for training in this

paper is captured below. The training and testing procedure

used in this paper is captured below.

1) Training Phase

 The training of the proposed algorithm was done on 60,000

MNIST dataset following the steps in table II.

TABLE II

TRAINING MNIST DATASET SETS

1. For each experiment with different parameters.

2. For each Kth-fold cross validation (see Table II)

3. We initialize the random weights and set other

parameters of the classifier which are hidden neurons

(h), iteration (i) and number of inputs (K) from PCA

4. A sample, Xi from 54,000 cross-validation (cv)

training sample is passed through the classifier

5. The classifier gives result of output of that sample

using the activation function.

6. If the output is different from the desired output, then

the error gradient is calculated.

7. The error is propagated backwards in the network

update the weights with respect to the error.

8. Steps 4 to 7 is repeated for all 54,000 cv training

samples and the weights are updated according the

error.

9. The training runs for different epochs based on the

iteration i for this experiment, minimizing the

classification error.

10. After all epochs, the forward propagation is taken to

classify the 6,000 test sample

11. Calculated the accuracy and error rate in classifying

in step 10.

12. Repeated step 2 to 11 for all 10 folds, where one Kth

subset of 6,000 samples is test data and remaining

54,000 samples are training data.

13. The average cv error of 10-folds is calculated and all

parameters of this model were saved.

14. Steps 1 to 13 are carried out for different experiments

with different h, i and K values, such that we get

maximum accuracy with minimum computation.

15. After all experiments, results of the models were

compared and model with best result was chosen.

 The first set of training was done with model without using

PCA for different number of epochs and the number for

neurons in the hidden layer was be obtained from the rule:

2

m n
N


 (9)

Where m and n are the number of neurons in the input and

output layers respectively.

2) Testing Phase

 The testing of the proposed algorithm was done as follows:

TABLE III

TESTING PROCEDURE

1. The model with best accuracy rate was chosen for

testing in 3 set of different test samples. The MNIST

10,000 test set, 30 paint digit images and in Kaggle

competition with 28,000 test data with unknown

labels (https://www.kaggle.com).

2. The model was used to predict the digit 0-9 using the

test set from three different source as in 1.

3. The predicted digit is compared with the actual digit

to get the classification accuracy for all the test

samples in MNIST and paint dataset. For Kaggle test

set, the predicted 28,000 digits are uploaded on the

on Kaggle and the accuracy result is given back.

F. Training Without PCA

 The first experiment was without PCA which followed the

same procedure as discussed in training phase, only the input

nodes having all 784 pixel inputs. The single layer neural

network model has 784 input nodes, 397 hidden nodes and 10

output nodes, with 0.1 learning rate and 2 as regularization

lambda value. The following table IV shows the accuracy and

time taken for different iteration.

TABLE IV

RESULT OF MODEL WITHOUT PCA

Iteration Average CV Accuracy (%) Time Taken (second)

200 97.433 9632.46449

400 98.003 18544.6042

600 98.105 27256.2739

800 98.113 35923.0287

1000 98.274 45011.5432

G. Training Neural Network With PCA

 The second experiment was using neural network with

Principal Component Analysis (PCA). The selection of

number of principal component (K) which becomes the

number of input nodes was determined with this training. The

number of hidden number is calculated using equation 9 for

different K values. The number of epochs is 100, learning rate

and other parameters are same for each K principal

component. The result is captured in Fig. 7, which shows the

average cross validation accuracy versus the number of

principal components.

H. Training Further with Best Principal Components (K)

 After finding the number principal component with respect

to the accuracy from second experiment, the three best K was

chosen which gave the maximum average cross validation

accuracy in cross validation. These models were further

trained with different epochs and hidden nodes as shown in

Table V.

Fig. 7. Average cross validation accuracy vs number of

principal component

TABLE V

THE RESULT OF NEURAL NETWORK WITH

DIFFERENT K PRINCIPALS AND PARAMETERS

From the result, the model with K = 66, 1000 epochs, 99

hidden nodes is selected for testing on the MNIST’s test data.
Comparing the time taken to train the model with or without
PCA, it is seen that using PCA the computation time reduces
by 39.429% getting almost identical accuracy. If different K
vale value is chosen then this comparison may differ.

Using the model selected, it was trained using the 60,000
training data and tested with 10,000 test data as the result
shown in result section. To get best model submitted on

K Epochs
Hidden

nodes

Average cv

Accuracy

Time

Taken

52 500 31 96.51 5274.591

52 1000 31 96.95 9962.74

52 1000 70 97.97 24713.928

52 1000 90 98.02 27397.288

66 500 38 96.96 6250.179

66 1000 38 97.15 13109.53

66 1000 85 98.18 25847.239

66 1000 90 97.93 26464.829

66 1000 99 98.27 27273.124

77 500 44 97.05 7411.033

77 1000 44 97.19 14345.86

77 1000 70 98.01 26064.834

77 1000 90 98.15 31576.247

77 1000 100 98.18 31576.247

https://www.kaggle.com/

Kaggle, we also tried training the model by increasing the
hidden nodes to large number which are 200, 300, and 500 and
tested it with 10,000 test samples where we obtained the
accuracy 98.23%, 98.33% and 98.67% respectively. We were
able to do all these long experiments as we had powerful server
to run all our trainings.

VI. RESULT

 After cross validation, the algorithms with and without

PCA with best accuracy were selected for testing and

comparison. These models were trained using the 60,000

MNIST training sample and then tested using the 10,000 test

samples. The algorithms are:

A. Neural Network Without PCA

 The number of input nodes is 784 as there are 784 features,

397 in the hidden layer and 10 output nodes in output layer.

The learning rate is 0.01 and regularization lambda is 2. The

time taken to train the model is 27109.652seconds.

B. Neural Network With PCA

 This is the proposed algorithm for this paper. The

minimum principal component which gave the maximum

accuracy was selected, that is 66 principal comments which

retain about 92% of variance (see Fig. 6). Therefore, the

number of input nodes is 66 based on principal component, 99

nodes in the hidden layer and 10 output nodes in output layer.

The learning rate is 0.01 and regurgitation lambda is 2. The

time taken to train the model is 4223.010seconds. The results

of these 2 algorithms are shown in Table VI.

TABLE VI

THE COMPARISON OF NEURAL NETWORK RESULTS

WITH AND WITHOUT PCA

Digit

NN without PCA (784-

397-10)

PCA +

ANN

0 99.39% 99.29%

1 99.12% 99.21%

2 98.16% 98.16%

3 98.51% 98.71%

4 98.17% 97.96%

5 97.09% 97.98%

6 98.43% 98.64%

7 98.25% 98.15%

8 97.95% 98.15%

9 97.82% 97.62%

Total 98.29% 98.39%

 It is seen that using PCA with neural network, the

computation is reduced by about 80% in this case and it would

reduce further or less depending on the number of principal

component selected. The proposed model has better accuracy

rate compared to model without PCA.

C. Testing Using Paint Digit Image

 The proposed algorithm was then used to predict 30 paint

digit samples. The algorithms were able to successfully

classify 96.7% of the test samples.

D. Testing in Kaggle Digit Recognition Completion

 The proposed algorithm is also tested using the kaggle’s

testing dataset. The dataset consist of 28,000 testing images

with 784 features (28 x 28 pixels). This is independent images

whose labels are not given. Using the proposed algorithm, we

classified each of the 28,000 samples and the predicted

label/output for each sample was placed in the csv file with

each row corresponding to each sample (28,000 rows). The

csv file was uploaded on Kaggle and instant accuracy was

given and it got ranked with other competitors in the

leaderboard. Our proposed algorithm got 98.286% accuracy

and is ranked 48 out of 384 competitors as shown in Fig. 8.

Fig. 8. Ranking obtained from Kaggle Digit Recognition

competition

VII. DISCUSSION

 The proposed system had 98.4% accuracy, which means

1.6% is misclassified image by the proposed algorithm which

is shown in Fig. 9. On the list, some reasons for

misclassification were made due to unclear way of writing,

segmentation problem or noise in the data. To increase

recognition further research is needed on ambiguous digits.

There are some digits which are not misclassified but can be

easily recognized by human, which means that the algorithm

can be improved. Some improvement might be by adding new

features, use feature extractions technique to remove noise

make it clear for algorithm to classify.

Fig. 9 Misclassified Digits. The top labeled digit is actual

digit and the bottom labeled digit is predicted digit.

The proposed system has many computational advantages

as it doesn’t require must storage and done the training in 5
times faster than using neural network on its own. This means

that the system can be trained using less powerful machine.
The selection of number of principal component to be used in
the model is a critical decision as this will also reflect on the
accuracy based on the variance retained. We will expand this
system in future to use genetic algorithm to reduce feature
obtaining the best feature required to obtain the maximum
accuracy.

The following table VII compared the proposed algorithm’s
accuracy with other algorithms used for digit recognition using
Neural Networks.

TABLE VII

THE COMPARISON OF OTHER NEURAL NETWORK

RESULTS WITH PROPOSED ALGORITHM

Algorithm Accuracy

ANN with PCA (K=64, h= 35) [1] 91.20%

Boosted LeNet 4 [9] 99.3%

ANN with PCA (Proposed) 98.39%

VIII. CONCLUSION

In this paper, a method to recognize handwritten digit by
using single layer neural network and PCA was proposed. The
aim was to get maximum accuracy on digit recognition and to
reduce the features for ease computation. This was achieved by
the algorithm with 66 principal components giving 98.39%
accuracy on MNIST test dataset.

Some misclassified digits are ambiguous either by unclear
writing or segmentation problem. This can be further improved
by increasing the feature and to use multiply feature extraction
techniques. A combination of classifiers can also be used but
we want the computation to be minimized.

More features extraction methods can be used to select the
best feature required for digit recognition. In future, we will
extend this system to use Genetic Algorithm to select the best
features to obtained maximum accuracy in handwritten digit
recognition, a computer vision problem.

REFERENCES

[1] Z. Dan, and C. Xu, “The Recognition of Handwritten Digit Basedon BP

Neural Network and the Impleementation on Android,” Third
International Conference on Intelligent System Design and Engineering

Applications, pp. 1498-1501, 2013.

[2] B. J. Zwaag, “Handwritten Digit Recognition: A Neural Network
Demo” B. Reusch (Ed.): Fuzzy Days2001, pp. 762–771, 2001.

[3] Cruz, G. Cavalcanti, and T. Ren, “Handwritten Digit Recognition

Using Multiple Feature Extraction Techniques and Classifier
Ensemble,” 17th International Conference on Systems, Signals and

Image Processing, pp. 215-218, 2010.

[4] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradientbased
learning applied to document recognition,” Proceedings of the IEEE,

vol. 86, no. 11, pp. 2278–2324, 1998.

[5] P. Zhang, Reliable recognition of handwritten digits using a cascade
ensemble classifier system and hybrid features, Ph.D. thesis, Concordia

University, Montreal, P.Q., Canada, 2006.

[6] F. Lauer, C. Suen, and G. Bloch, “A trainable feature extractor for
handwritten digit recognition,” Pattern Recognition, vol. 40, no. 6,

pp.1816–1824, 2007.

[7] E. Kavallieratou, K. Sgarbas, N. Fakotakis, and G. Kokkinakis,

“Handwritten word recognition based on structural characteristics and

lexical support,” International Conference on Document Analysis and

Recognition, pp. 562–567, 2003.

[8] L. S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Suen, “Automatic
recognition of handwritten numerical strings: A recognition and

verification strategy,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 24, no. 11, pp. 1438–1454, 2002.
[9] Y. LeCun, L. Jackel, L. Bottou, A. Brunot, C. Cortes, J. Denker, H.

Drucker, I. Guyon, U. Muller, and E. Sackinger, "Comparison of

learning algorithms for handwritten digit recognition," International
conference on artificial neural networks volume 60, 1995.

[10] B. Karlik and A. Olgac, "Performance Analysis of Various Activation

Functions in Generalized MLP Architectures of Neural Networks,"
International Journal of Artificial Intelligence And Expert Systems

(IJAE), Volume (1): Issue (4).

[11] Rani, D.K.U.: ‘Analysis of Heart Diseases Dataset Using Neural
Network Approach’, International Journal of Data Mining &

Knowledge Management Process (IJDKP), 2011, 1, (5)

[12] S. Knerr, L. Personnaz, G. Dreyfus, “Handwritten Digit Recognition by

Neural Networks with Single-Layer Training,” IEEE Transactions on

Neural Networks, vol. 3, 962 (1992).

[13] A. Ilin, and T.Raiko,"Practical Approaches to Principal Component
Analysis in the Presence of Missing Values" Journal of Machine

Learning Research 11 (2010) 1957-2000.

