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Abstract— In this paper we compare the performance of back 
propagation and resilient propagation algorithms in training 
neural networks for spam classification. Back propagation 
algorithm is known to have issues such as slow convergence, 
and stagnation of neural network weights around local optima. 
Researchers have proposed resilient propagation as an 
alternative. Resilient propagation and back propagation are 
very much similar except for the weight update routine. 
Resilient propagation does not take into account the value of 
the partial derivative (error gradient), but rather considers 
only the sign of the error gradient to indicate the direction of 
the weight update. We show that resilient propagation yields 
faster convergence and higher accuracy on the UCI Spambase 
dataset.  

Keywords- Neural Networks; Back Propagation; Resilient 
Propagation; Spam Classification 

I.  INTRODUCTION  
In a relatively short timeframe, Internet has become 
irrevocably and deeply entrenched in our modern society 
primarily due to the power of its communication substrate 
linking people and organizations around the globe. Email 
has become one of the most reliable and economical forms 
of communication as the number of Internet users has 
increased, and individuals and organizations rely more and 
more on the emails to communicate and share information 
and knowledge. The number of emails has been increasing 
all the time; however, this explosive growth comes with a 
variety of problems. The number of unsolicited commercial 
emails or spam emails has been increasing dramatically over 
the last few years. 

To overcome this issue, spam filters are introduced. One 
of the methods of filtering spam is using neural networks to 
intelligently classify an email as a spam or a ham. In order 
to use a Neural Network it has to be trained first to get the 
optimal weights. 

Previous researches have shown that neural network can 
achieve very accurate results [1]. On the other hand, there 
are disadvantages to the method also. The main 
disadvantage of neural network is that it requires 
considerable time for parameter selection and network 

training. If a poor choice is made for the learning rate, 
training momentum or delta values then training will not be 
as successful. 

A hybrid method that combines neural network and 
genetic algorithms for feature selection is presented for 
robust detection of spam [2]. Cui et al. proposed a model 
based on the neural network to classify personal emails, and 
the use of principal component analysis (PCA) as a pre-
processor of neural network to reduce the data in terms of 
both dimensionality and size [3]. These studies show that 
neural network can be successfully used for automated 
email classification and spam filtering. Back propagation 
(BP) neural network is the most popular among all the 
neural network applications. It has the advantages of 
yielding high classification accuracy. However, practical 
applications are difficult to be satisfied because of the 
problems of slow learning and the likelihood of being 
trapped into a local minimum especially when the size of 
the network is large. These problems are due to the fact that 
the learning of BP neural network is mechanical and 
elementary. Many researchers have worked to overcome 
these problems, especially the local convergence [4]. 

Multilayer networks typically use sigmoid transfer 
functions in the hidden layers. These functions are often 
called "squashing" functions, because they compress an 
infinite input range into a finite output range. Sigmoid 
functions are characterized by the fact that their slopes 
approach zero, as the input gets large. This causes a problem 
when you use steepest descent (gradient decent/ back 
propagation) to train a multilayer network with sigmoid 
functions, because the gradient can have a very small 
magnitude and, therefore, cause small changes in the 
weights and biases, even though the weights and biases are 
far from their optimal values. 

In this paper we use resilient propagation to overcome the 
drawbacks of back propagation learning. Back propagation 
as mentioned previously is slow at converging due to the 
gradients having a very small magnitude, which causes 
small changes in weights. The purpose of the resilient 
propagation (RPROP) training algorithm is to eliminate the 



harmful effects of these magnitudes of the partial 
derivatives. Only the sign of the derivative can determine 
the direction of the weight update; the magnitude of the 
derivative has no effect on the weight update. Another most 
difficult aspect of the back propagation learning was picking 
the correct training parameters. Resilient propagation does 
have training parameters, but it is extremely rare that they 
need to be changed from their default values. This makes 
resilient propagation a very easy way to use a training 
algorithm. It also has the nice property that it requires only a 
modest increase in memory requirements. Additionally, 
resilient propagation is considerably more efficient than 
back propagation. 

II. RESILIENT PROPAGATION  

A. Description 
Resilient propagation, in short, RPROP is one of the 

fastest training algorithms available. The RPROP algorithm 
just refers to the direction of the gradient. It is a supervised 
learning method. It works similarly to back propagation, 
except that the weight updates is done in a different manner.  

In back propagation the change in weight is calculated 
with the magnitude of the partial derivative: 

 
!wij (t) =! " xi (t)"" j (t)                             (1) 

where α is the learning rate, xi(t) represents the inputs 
propagating back to the ith neuron at time step t, and δ is the 
corresponding error gradient. 

Resilient propagation, on the other hand, calculates an 
individual delta Δij, for each connection, which determines 
the size of the weight update. The following learning rule is 
applied to calculate delta: 
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The update-value Δij evolves during the learning process 
based on the sign of the error gradient of the previous 
iteration,          and the error gradient of the current iteration,                

    . Every time the partial derivative (error gradient) of 
the corresponding weight wij changes its sign, which 
indicates that the last update was too big and the algorithm 
has jumped over a local minimum, the update-value Δij is 
decreased by the factor η-, which is a constant usually with a 
value of 0.5. If the derivative retains its sign, the update 

value is slightly increased by the factor η+ in order to 
accelerate convergence in shallow regions. η+, is a constant 
usually with a value of 1.2. If the derivative is 0 then we do 
not change the update-value. 

Once the update-value is calculated for each weight, the 
weight-update is then calculated. There are two rules to 
follow to calculate the weight-update. 

The first rule is that if the current derivative and the 
previous derivative retain their signs then Equation 3 is used 
to calculate the weight-update. 
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If the current derivative is a positive value meaning the 

previous value was also a positive value (increasing error), 
then the weight is decreased by the update value. If the 
current derivative is negative value meaning the previous 
value was also a negative value (decreasing error) then the 
weight is increased by the update value. 

The second rule is that if the current derivative and the 
previous derivative have changed their signs i.e. there was a 
big step taken then chances are that a minimum was missed. 
To avoid such big jumps, the weights need to be reverted to 
the previous state. 
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If the weight was reverted then the previous derivative 

needs to also be changed, otherwise when the weight is 
updated again then it will reapply the same changes, 
repeating this scenario. Therefore, the previous derivative              
            is set to 0. 
 

B. Parameters 
Resilient propagation uses the following parameters, Δ0, 

Δmax, Δmin, η+ and η-.  
Δ0 is the initial value of the delta update-value Δij. This 

value is set to 0.1. Martin Riedmiller, has proved that the 
choice of this parameter is not critical at all. Even for much 
larger or smaller of this value, fast convergence is achieved. 
Δmax, is the maximum value a delta update, Δij, can have. 

This value is set to 50. Δmin, is the minimum value a delta 
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TABLE I 
 

ATTRIBUTES OF SPAMBASE DATASET 

Num of 
Attributes Data type Range Description 

48 Real [0,100] Word frequency expressed as a 
percentage 

 
6 

 
Real 

 
[0,100] 

 
Char frequency expressed as a 

percentage 

 
1 

 
Real 

 
[1,…] 

 
Average length of 

uninterrupted sequences of 
capital letters 

 
1 

 
Integer 

 
[1,…] 

 
Average length of 

uninterrupted sequences of 
capital letters 

 
1 

 
Integer 

 
[1,…] 

 
Total number of capital letters 

in the e-mail 

 
1 

 
Nominal 

 
{0,1} 

 
Class attribute 

{0=Ham, 1= Spam} 
       58  Total Attributes 

 

update, Δij, can have. This is set to a very low positive 
value, 1e-6.  

The η- was given a value of 0.5. η- value is used as a 
reducing factor when the derivative has changed sign. This 
is usually a big jump, probably missing the minimum. Since 
it is not known by how much the minimum was missed, it is 
a good guess to halve the update-value by using η- = 0.5. On 
the other hand, η+ has to be large enough for fast growth.  
However, if it is too large a value then learning process can 
be disturbed. η+ was chosen as 1.2. It is stated in [5] that 
experiments were done to alter this value to see performance 
but changing the value did not make any difference to the 
convergence time, therefore it is advised to keep these 
constants with their default values. 

C. Algorithm 
Putting together the concepts discussed in the previous 

section, results in the following algorithm. 
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D. Discussion 
Both back propagation and resilient propagation 

technique work in similar manner. There are three distinct 
steps: 

1. Perform a regular feed forward pass 
2. Process the levels backwards and determine the error 
    gradients at each level 
3. Apply the changes to the weights  
 
First, a regular feed forward pass is performed. The 

output from each level is kept so that the error for each level 
can be evaluated independently. Second, the errors are 
calculated at each level, and the derivatives of each of the 
activation functions are used to calculate gradient descents. 
These gradients will be used in the third step. 

The third step is where the two algorithms vary. Back 
propagation simply takes the gradient descents and scales 
them by a learning rate. The scaled gradient descents are 
then directly applied to the weights and thresholds. RPROP 
keeps an individual delta value for every weight and only 
uses the sign of the gradient descent to increase or decrease 
the delta amounts. The delta amounts are then applied to the 
weights. 

III. RESULTS 

A. Data Preparation 
The dataset used in this experiment is from the UCI 

Machine Learning Repository 1  and consists of 4601 
instances. The class distribution comprised of 1813 Spam 
messages (39.4%) and 2788 Ham messages (60.6%). The 
attribute information of the dataset is provided in Table I. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

                                                             
 

1 http://archive.ics.uci.edu/ml/datasets/Spambase 



The data was normalized in the range [0, 1]. Two dataset 
were prepared from this single set, training set (80%) and 
testing set (20%). Each of these sets had a distribution of 
60% ham and 40% spam. From the training and testing set, 
five sets were created by randomly selecting email data 
from them for training and testing, maintaining the ratio of 
hams to spams stated above.  

B. Testing Methodology 
For our study we implemented two learning procedures: 

back propagation learning algorithm and the resilient 
propagation algorithm. 

The initial network structure contained 57 input neurons 
at the input layer, 29 neurons in the hidden layer and 1 
neuron in the output layer. 

To allow a fair comparison between the two algorithms 
they were tested for 5 different threshold values for a fixed 
number of epochs (500). The threshold applied to the output 
neuron, marks the boundary between spam and ham. The 
accuracy and false positive were obtained for each of the 
threshold values as an average of five runs per threshold on 
five different training sets. These values were then 
compared for the two algorithms.  

Furthermore, the better of the two algorithms was chosen 
and further tested by varying the hidden layers, and the 
neuron count in the layers. 

C. Accuracy and False Positive Comparison 
Both, back propagation and resilient propagation 

algorithm were tested on 5 different thresholds with 5 runs 
for each threshold. Once this was done the average of the 
accuracy and false positive was tabulated for comparison 
(Table II). 

As seen in Fig. 1, the resilient propagation was able to 
converge faster towards better accuracy and false positive 
rates.  

Also from the results the threshold that produced an 
accepted value for the accuracy and false positive was 0.4 in 
both the cases.  Since resilient propagation produced better 
results it was chosen as our learning algorithm for the neural 
network. 
 

D. Convergence Comparison 
The key design change in the weight update routine of the 

resilient propagation algorithm has been attributed to better 
convergence characteristics compared to back propagation 
algorithm. In order to verify this, both the networks were 
run multiple times for 500 epochs at the optimal threshold 
(0.4). Fig. 2 shows the convergence rate of both the 
propagation algorithms, and confirms that resilient 
propagation converges much faster than the normal back 
propagation algorithm. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

E. Efficiency Comparison 
As resilient propagation only considers the sign of the 

partial derivative of the delta to update its weights, it is 
therefore less computationally intensive, which significantly 

TABLE II 
ACCURACY AND FALSE POSITIVE FOR DIFFERENT THRESHOLDS  

Threshold	  
Back	  propagation	   Resilient	  propagation	  

FP	  %	   Acc	  %	   FP	  %	   Acc	  %	  

0.3	   40.65	   69.14	   24.62	   78.17	  

0.4	   35.45	   71.56	   21.97	   77.76	  

0.5	   41.29	   68.01	   26.49	   75.32	  

0.6	   39.86	   69.73	   23.91	   75.87	  

0.7	   42.87	   67.88	   22.87	   77.32	  

 
 

 
Fig. 2.  Sum square error plotted for for back propagation and resilient 
propagation algorithm. 
  

 
Fig. 1.  Distribution of accuracy and false positive for different threshold 
values {0.3, 0.4, 0.5, 0.6, 0.7} 
  

Resilient 
propagation 

Back propagation 



reduces the convergence time. Fig. 3 shows the comparison 
of the time it takes to train a neural network for 500 epochs 
using the two algorithms with the threshold value set to 0.4. 

F. Effect of Increasing Hidden Layers on Resilient 
Propagation Network 

We selected resilient propagation algorithm for further 
investigation as it yielded better results compared back 
propagation algorithm. To investigate the effect of the 
number of hidden layers, the network was tested with 1, 2, 
3, and 4 hidden layers. Each hidden layer contained half of 
the neurons in the previous layer. The network was run for 
500 epochs for all the thresholds to obtain the threshold, 
which provided the highest accuracy and the lowest false 
positives. The results in Table III, show that still the 
threshold of 0.4 provided the best results with one hidden 
layer. A network with more than two hidden layers can start 
generating arbitrary complex regions in the state space [6] 
and end up over fitting the parameters. 

 

G. Effect of Changing Neuron Count 
The hidden layer initially consisted of 29 neurons. To 

find out the effect of the neuron count on the network, the 
number of neurons was altered in the hidden layer. The 
neuron counts tested were 15, 20, 25, 30, 35, 40 and 45. The 
threshold value of 0.4 was used on a three-layer network, as 
a single hidden layer gave better results. 

Fig 4 and 5 show the effect of changing the neuron count 
at the hidden layer. From the results it is evident that 40 
neurons at the hidden layer yielded the best solution. 

 

IV. CONCLUSION 
In certain online learning environments, it is sometimes 

preferably to get good results in a short period of time than 
to wait a long duration for the best result. Resilient 
propagation algorithm is similar to back propagation 
algorithm for neural networks, except for a key difference, 
which relates to how the weights are updated depending on 
the sign of the error gradient. Through empirical means, we 

 
Fig. 4.  Accuracy rate against the number of neurons at the hidden layer for 
a network with single hidden layer trained with resilient propagation.  
 

 
 
Fig. 3.  Time taken to complete training with 500 epochs 
 

TABLE III 
EFFECT OF CHANGING HIDDEN LAYERS 

T
h
r
e
s 

# of Hidden Layers 

1 2 3 4 
FP  
% 

Acc 
% 

FP 
% 

Acc 
% 

FP 
% 

Acc 
% 

FP 
% 

Acc 
% 

0.4 20.9 77.8 26.8 75.8 27.3 74.9 23.8 78.7 

0.5 25.1 75.3 25.8 75.6 23.2 78.4 24.4 78.1 

0.6 22.7 75.9 27.7 74.5 26.7 75.0 23.4 78.8 

0.7 21.7 77.3 26.0 75.8 26.5 74.8 23.2 78.9 

 

 
Fig. 5.  False positive rate against the number of neurons at the hidden layer 
for a network with single hidden layer trained with resilient propagation 
  



have evaluated the effectiveness of this key difference in 
producing faster convergence and higher accuracy on the 
Spambase dataset. This makes resilient propagation a 
promising choice for training neural networks for time-
sensitive machine learning applications. 
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