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a b s t r a c t

The regularized linear discriminant analysis (RLDA) technique is one of the popular methods for
dimensionality reduction used for small sample size problems. In this technique, regularization
parameter is conventionally computed using a cross-validation procedure. In this paper, we propose a
deterministic way of computing the regularization parameter in RLDA for small sample size problem.
The computational cost of the proposed deterministic RLDA is significantly less than the cross-validation
based RLDA technique. The deterministic RLDA technique is also compared with other popular
techniques on a number of datasets and favorable results are obtained.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Linear discriminant analysis (LDA) is a popular technique for
dimensionality reduction and feature extraction. Dimensionality
reduction is a pre-requisite for many statistical pattern recognition
techniques. It is primarily applied for improving generalization
capability and reducing computational complexity of a classifier. In
LDA the dimensionality is reduced from d-dimensional space to
h-dimensional space (where hod) by using a transformation
WAℝd�h. The transformation (or orientation) matrix W is found
by maximizing the Fisher’s criterion: J Wð Þ ¼ jWTSBWj=jWTSWWj,
where SW Aℝd�d is within-class scatter matrix and SBAℝd�d is
between-class scatter matrix. Under this criterion, the transforma-
tion of feature vectors from higher dimensional space to lower
dimensional space is done in such a manner that the between-
class scatter in the lower dimensional space is maximized and
within-class scatter is minimized. The orientation matrix W is
computed by the eigenvalue decomposition (EVD) of S�1

W SB [1].
In many pattern classification applications, the matrix SW

becomes singular and its inverse computation becomes impossi-
ble. This is due to the large dimensionality of feature vectors
compared to small number of vectors available for training. This
is known as small sample size (SSS) problem [2]. There exist
several techniques that can overcome this problem [3–11,19–34].
Among these techniques, regularized LDA (RLDA) technique [3] is

one of the pioneering methods for solving SSS problem. The RLDA
technique has been widely studied in the literature [12–14]. It has
been applied in areas like face recognition [13,14] and bioinfor-
matics [15].

In the RLDA technique, the SW matrix is regularized to over-
come the singularity problem of SW . This regularization can be
done in various ways. For example, Zhao et al. [12,16,17] have done
this by adding a small positive constant α (known as regularization
parameter) to the diagonal elements of matrix SW ; i.e., the matrix
SW is approximated by SW þαI and the orientation matrix is
computed by EVD of SW þαIð Þ�1SB. The performance of RLDA
technique depends on the choice of the regularization parameter
α. In the past studies [18], this parameter is chosen rather
heuristically, for example, by applying cross-validation procedure
on the training data. In the cross-validation based RLDA technique
(denoted here as CV-RLDA), the training data is divided into two
subsets: training subset and validation subset. The cross-validation
procedure searches over a finite range of α values and finds an α
value in this range that maximizes the classification accuracy over
the validation subset. In the cross-validation procedure, the
estimate of α depends on the range over which it is explored.
For a given dataset, its classification accuracy can vary depending
upon the range of α being explored. Since many values of α have to
be searched in this range, the computational cost of this procedure
is quite high. In addition, the cross-validation procedure used in
the CV-RLDA technique is biased towards the classifier used.

In order to address these drawbacks of CV-RLDA technique, we
explore a deterministic way for finding the regularization para-
meter α. This would provide a unique value of the regularization
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parameter on a given training data. We call this approach as the
deterministic RLDA (DRLDA) technique. This technique avoids the
use of the heuristic (cross-validation) procedure for parameter
estimation and improves the computational efficiency. We show
that this deterministic approach computes the regularization
parameter by maximizing the Fisher’s criterion and its classifica-
tion performance is quite promising compared to other LDA
techniques.

2. Related work

In a SSS problem, the within-class scatter matrix SW becomes
singular and its inverse computation becomes impossible. In order
to overcome this problem, generally inverse computation of SW is
avoided or approximated for the computation of orientation
matrix W. There are several techniques that can overcome this
SSS problem. One way to solve this problem is by estimating the
inverse of SW by its pseudoinverse and then the conventional
eigenvalue problem can be solved to compute the orientation
matrix W. This was the basis of pseudoinverse LDA (PILDA)
technique [20]. Some improvements of PILDA have also been
presented in [28,31]. In Fisherface (PCAþLDA) technique,
d-dimensional features are firstly reduced to h-dimensional fea-
ture space by the application of PCA [2,52,53] and then LDA is
applied to further reduce features to k dimensions. There are
several ways for determining the value of h in PCAþLDA technique
[4,5]. In the Direct LDA (DLDA) technique [7], the dimensionality is
reduced in two stages. In the first stage, a transformation matrix is
computed to transform the training samples to the range space of
SB, and in the second stage, the dimensionality of this transformed
samples is further transformed by some regulating matrices. The
Improved DLDA technique [11], addresses drawbacks of DLDA
technique. In the improved DLDA technique, first SW is decom-
posed into its eigenvalues and eigenvectors instead of SB matrix as
of DLDA technique. Here, both its null space and range space
information are utilized by approximating SW by a well determi-
nistic substitution. Then SB is diagonalized using regulating
matrices. For the Null LDA (NLDA) technique [6], the orientation
W is computed in two stages. In the first stage, the data is
projected on the null space of SW and in the second stage it finds
W that maximizes jWTSBWj. In orthogonal LDA (OLDA) technique
[8], the orientation matrix W is obtained by simultaneously
diagonalizing scatter matrices. It has shown that OLDA is equiva-
lent to NLDA under a mild condition [8]. The Uncorrelated LDA
(ULDA) technique [21], is a slight variation of OLDA technique. In
ULDA, the orientation matrix W is made uncorrelated. The fast
NLDA (FNLDA) technique [25], is an alternative method of NLDA. In
this technique, the orientation matrix is obtained by using the
relation W¼ Sþ

T SBY, where Y is a random matrix of rank c�1, and
c is the number of classes. This technique is so far the fastest
technique of performing null LDA operation. In extrapolation LDA
(ELDA) technique [32], the null space of SW matrix is regularized
by extrapolating eigenvalues of SW using exponential fitting
function. This technique utilizes range space information and null
space information of SW matrix. The two stage LDA (TSLDA)
technique [34], exploits all four informative spaces of scatter
matrices. These spaces are included in two separate discriminant
analyses in parallel. In the first analysis, null space of SW and range
space of SB are retained. In the second analysis, range space of SW
and null space of SB are retained. In eigenfeature regularization
(EFR) technique [10], SW is regularized by extrapolating its
eigenvalues in its null space. The lagging eigenvalues of SW is
considered as noisy or unreliable which are replaced by an
estimation function. The general tensor discriminant analysis
(GTDA) technique [48] has been developed for image recognition

problems. This work focuses on the representation and pre-
processing of appearance-based models for human gait sequences.
Two models were presented: Gabor gait and tensor gait. In [49],
authors proposed a constrained empirical risk minimization fra-
mework for distance metric learning (DML) to solve SSS problem.
In double shrinking sparse dimension reduction technique [50],
the SSS problem is solved by penalizing the parameter space. A
detailed explanation regarding LDA is given in [51] and an over-
view regarding SSS based LDA techniques is given in [47]. There
are other techniques which can solve SSS problem and applied in
various fields of research [54–62]. In this paper, we focus on
regularize LDA (RLDA) technique. This technique overcomes SSS
problem by utilizing a small perturbation to the SW matrix. The
details of RLDA have been discussed in the next section.

3. Regularized linear discriminant techniques for SSS problem

In the RLDA technique, the within-class scatter matrix SW is
approximated by adding a regularization parameter to make it a
non-singular matrix [3]. There are, however, different ways to
perform regularization (see for details, [3,12–14,16,17,30,33]). In
this paper we adopted Zhao’s model [12,16,17] to approximate SW
by adding a positive constant in the following way ŜW ¼ SW þαI.1

This will make within-class scatter matrix a non-singular matrix
and then its inverse computation would be possible. The RLDA
technique computes the orientation matrix W by EVD of Ŝ

�1
W SB.

Thus, this technique uses null space of SW , range space of SW and
range space of SB in one step (i.e., simultaneously).

In the RLDA technique, a fixed value of regularization para-
meter can be used, but it may not give the best classification
performance as shown in Appendix B. Therefore, the regulariza-
tion parameter α is normally computed by the cross-validation
procedure. The cross-validation procedure (e.g. leave-one-out or
k-fold) employs a particular classifier to estimate α and is con-
ducted on the training set (which is different from the test set). We
briefly describe below the leave-one out cross-validation proce-
dure used in the CV-RLDA technique. Let ½a; b� be the range of α to
be explored and α0 be any value in this range. Consider a case
when n training samples are available. The training set is first
subdivided into training subset (consisting of n�1 samples) and
validation subset (consisting of 1 sample). For this particular
subdivision of training set, the following operations are required:
(1) computation of scatter matrices SB, SW and ŜW ¼ SW þα0I for
n�1 samples in the training subset; (2) EVD of Ŝ

�1
W SB to compute

orientation matrix W; and (3) classification of the left out sample
(from the validation subset) by the classifier to obtain the
classification accuracy. These computational operations are carried
out for n�1 subdivisions of the training set and the average
classification accuracy over the n�1 runs is computed. This
average classification accuracy is obtained for a particular value
of α (namely α0). All the above operations will be repeated for
other values of α in the range ½a; b� to get the highest average
classification accuracy. From this description, it is obvious that the
cross-validation procedure used in the CV-RLDA technique has the
following drawbacks:

� Since the cross-validation procedure repeats the above-mentioned
computational operations many times for different values of α, its
computation complexity is extremely large.

1 In the Friedman’s model [3], SW is estimated as ŜW ¼ 1�αð ÞSW þαI. We have
compared Zhao’s model and Friedman’s model of CV-RLDA and found that Zhao’s
model exhibits comparatively better generalization capability (see Appendix A for
details). Furthermore, we have considered Zhao’s model because it is relatively
simpler for establishing deterministic approach of computing α (in DRLDA).
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� Since the cross-validation procedure used in the CV-RLDA
technique searches the α parameter over a finite range ½a; b�,
it may not estimate its optimum value. In order to estimate its
optimum value, one has to investigate all possible values of α in
the range of ð0;1Þ. However, it is an impossible task (as it will
take infinite amount of computation time). Thus, the α value
computed by this procedure depends on two factors: (1) the
range over which it is searched, and (2) the fineness of the
search procedure.

� The cross-validation procedure estimates the regularization
parameter in CV-RLDA for a particular classifier. Thus, the
estimated value is specific to the classifier and cannot be
generalized to other classifiers.

In our proposed DRLDA technique, we use a deterministic
approach to estimate α parameter by maximizing the modified
Fisher’s criterion. The proposed technique is described in the next
section.

4. DRLDA technique

4.1. Notations

Let X ¼ fx1; x2;…; xng denotes n training samples (or feature
vectors) in a d-dimensional space having class labels Ω¼ fω1;ω2;

…;ωng, where ωAf1;2;…; cg and c is the number of classes. The set
X can be subdivided into c subsets X1, X2,…, Xc where Xj belongs to
class j and consists of nj number of samples such that:

n¼ ∑
c

j ¼ 1
nj

and Xj�X and X1[X2[…[Xc¼X.
If μj is the centroid of Xj and μ is the centroid of X, then the total

scatter matrix ST , within-class scatter matrix SW and between-
class scatter matrix SB are defined as [1,35,36]

ST ¼ ∑
xAχ

x�μð Þ x�μð ÞT;

SW ¼ ∑
c

j ¼ 1
∑

xA χj

x�μj
� �

x�μj
� �T

;

and SB ¼∑c
j ¼ 1nj μj�μ

� �
μj�μ
� �T.

Since for SSS problem d4n, the scatter matrices will be
singular. It is known that the null space of ST does not contain
any discriminant information [19]. Therefore, the dimensionality
can be reduced from d-dimensional space to rt-dimensional space
(where rt is the rank of ST ) by applying PCA as a pre-processing
step. The range space of ST matrix, U1Aℝd�rt , will be used as a
transformation matrix. In the reduced dimensional space the
scatter matrices will be given by: Sw ¼UT

1SWU1 and Sb ¼UT
1SBU1.

After this procedure SwAℝrt�rt and SbAℝrt�rt are reduced dimen-
sional within-class scatter matrix and reduced dimensional
between-class scatter matrix, respectively.

4.2. Deterministic approach to regularized LDA

In the SSS problem, Sw matrix becomes singular and its inverse
computation becomes impossible. In order to overcome this
drawback, the RLDA technique adds a small positive constant α
to all the diagonal elements of matrix Sw to make it non-singular;
i.e., Sw is replaced by Ŝw ¼ SwþαI. In this section, we describe a
procedure to compute the regularization parameter α determinis-
tically. In RLDA, the modified Fisher’s criterion is given as follows:

Ĵ w; αð Þ ¼ wTSbw
wTðSwþαIÞw ð1Þ

where wAℝrt�1 is the orientation vector. Let us denote a function

f ¼wTSbw ð2Þ
and a constraint function

g¼wTðSwþαIÞw�b¼ 0 ð3Þ
where b40 is any constant. To find the maximum of f under the
constraint, let us define a function F ¼ f �λg, where λ is Lagrange’s
multiplier (λa0). By setting its derivative to zero, we get

∂F
∂w

¼ 2Sbw�λ 2Swwþ2αwð Þ ¼ 0

or
1
λ
Sb�Sw

� �
w¼ αw: ð4Þ

Substituting value of αw from Eq. (4) into Eq. (3), we get

g ¼wTSwwþwTð1λSb�SwÞw�b¼ 0

or wTSbw¼ λb: ð5Þ
Also from Eq. (3), we get

wTðSwþαIÞw¼ b: ð6Þ
Dividing Eq. (5) by Eq. (6), we get

λ¼ wTSbw
wTðSwþαIÞw ð7Þ

The right-hand side of Eq. (7) is same as the criterion Ĵ w; αð Þ
defined in Eq. (1). The left-hand side of Eq. (7) is the Lagrange’s
multiplier (in Eq. (4)). Since our aim is to maximize the modified
Fisher’s criterion Ĵ w; αð Þ, we must set λ equal to maximum of
Ĵ w; αð Þ. However, it is not possible to find the maximum of Ĵ w; αð Þ
as α is not known to us. So, as an approximation we set λ equal to
the maximum of the original Fisher’s criterion (wTSbw=wTSww). In
order to maximize the original Fisher’s criterion, we must have
eigenvectorw to correspond to the maximum eigenvalue of S�1

w Sb.
Since in SSS problem Sw is singular and non-invertible, we
approximate the inverse of SW by its pseudoinverse and carry
out the EVD of Sþ

w Sb to find the highest (or leading) eigenvalue,
where Sþ

w is the pseudoinverse of Sw. Thus, if λmax denotes the
highest eigenvalue of Ĵ w; αð Þ, then

λmax ¼ max
wTSbw

wTðSwþαIÞw

� �

� max
wTSbw
wTSww

� �
� largest eigenvalue of Sþ

w Sb ð8Þ
Thereby, the evaluation of α can be carried out from Eq. (4) by

doing EVD of 1
λSb�Sw
� �

, where λ¼ λmax. The EVD of 1
λSb�Sw
� �

will
give rb ¼ rankðSbÞ eigenvalues. Since the highest eigenvalue will
correspond to the most discriminant eigenvector, α is the highest
eigenvalue. Therefore, if EVD of 1

λSb�Sw
� �

is given by

1
λ
Sb�Sw

� �
¼ EDbwE

T ð9Þ

where EAℝrt�rt is a matrix of eigenvectors and DbwAℝrt�rt is a
diagonal matrix of corresponding eigenvalues. Now the α para-
meter can be computed as

α¼ max Dbw ð10Þ
After evaluating α, orientation vector w can be obtained by

performing the EVD of ðSwþαIÞ�1Sb; i.e., from

ðSwþαIÞ�1Sbw¼ γw: ð11Þ
From the rb eigenvectors obtained by this EVD, h (rrb)

eigenvectors corresponding to h highest eigenvalues are used to
form the orientation matrix W.
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It can be shown from Lemma 1 that for DRLDA technique, its
maximum eigenvalue is approximately equal to the highest (finite)
eigenvalue of Fisher’s criterion.

Lemma 1. The highest eigenvalue of DRLDA is approximately
equivalent to the highest (finite) eigenvalue of Fisher’s criterion.

Proof 1. From Eq. (11),

Sbwj ¼ γjðSwþαIÞwj; ð12Þ

where α is the maximum eigenvalue of ð1=λmaxSb�SwÞ (from
Eq. (4)); λmaxZ0 is approximately the highest eigenvalue of
Fisher’s criterion wTSbw=wTSww (since λmax is the largest eigen-
value of Sþ

w Sb) [46]; j¼ 1…rb and rb ¼ rankðSbÞ. Substituting
αw¼ ð1=λmaxSb�SwÞw (from Eq. (4), where λ¼ λmax) into Eq. (12),
we get,

Sbwm ¼ γmSwwmþγmð1=λmaxSb�SwÞwm;

or λmax�γm
� �

Sbwm ¼ 0:

where γm ¼ maxðγjÞ and wm is the corresponding eigenvector.
Since Sbwma0 (from Eq. (5)), γm ¼ λmax and γjoλmax, where jam.
This concludes the proof.

Corollary 1. The value of regularization parameter is non-nega-
tive; i.e., αZ0 for rwrrt , where rt ¼ rankðST Þ and rw ¼ rankðSwÞ.

Proof. Please see Appendix C.

The summary of the DRLDA technique is given in Table 1,2.
The computational requirement for Step 1 of the technique

(Table 1) would be Oðdn2Þ; for Step 2 would be Oðn3Þ; for Step
3 would be Oðn3Þ; for Step 4 would be Oðn3Þ; and, for Step 5 would
be Oðdn2Þ. Therefore, the total estimated for SSS case (dcn) would
be Oðdn2Þ.

5. Experimental setup and results

Experiments are conducted to illustrate the relative perfor-
mance of the DRLDA technique with respect to other techniques
for the following two applications: (1) face recognition and (2)
cancer classification. For face recognition, two commonly known
datasets namely ORL dataset [37] and AR dataset [38] are utilized.
The ORL dataset contains 400 images of 40 people having 10
images per person. We use the dimensionality of the original
feature space to be 5152. The AR dataset contains 100 classes. We
use a subset of AR dataset with 14 face images per class. We use
the dimensionality of feature space to be 4980. For cancer

classification, 6 commonly available datasets are used. All the
datasets used in the experimentation are described in Table 2. For
some datasets, number of training samples and test samples are
predefined by their donors (Table 2). For these datasets, we use
test samples to evaluate the classification performance. For some
datasets, the training and test samples are not predefined. For
these datasets we carried out k-fold cross-validation procedure3 to
compute the classification performance, where k¼ 3.

The DRLDA technique is compared with the following techni-
ques: Null LDA (NLDA) [6], cross-validation based RLDA (CV-RLDA),
Pseudo-inverse LDA (PILDA) [20], Direct LDA (DLDA) [7], Fisherface
or PCAþLDA [4,5], Uncorrelated LDA (ULDA) [21] and eigenfeature
regularization (EFR) [10]. All the techniques are used to find the
orientation matrix WAℝd�c�1, thereby, transforming the original
space to c�1 dimensional space, where c is the number of classes.
Then nearest neighbour classifier (NNC) using Euclidean distance
measure is used for classifying a test feature vector.

The setting up of CV-RLDA technique in our experiments is
described as follows: the regularization parameter α of CV-RLDA is
computed by using leave-one-out cross-validation procedure on
the training set. This is done in two steps. In the first step, we
perform a coarse search for α by dividing the pre-selected range
½10�4;1� � λW (where λW is the maximum eigenvalue of SW ) into
10 equal intervals and finding the interval whose center value

Table 1
DRLDA technique.

Step 1 Pre-processing stage: apply PCA to find the range space U1Aℝd�rt of total scatter matrix ST and transform original d-dimensional data space to rt-dimensional

data space, where rt ¼ rankðST Þ. Find reduced-dimensional between-class scatter matrix Sb ¼UT
1SBU1 and reduced-dimensional within-class scatter matrix

Sw ¼UT
1SWU1, where SbAℝrt�rt and SwAℝrt�rt

Step 2 Find the highest eigenvalue λmax by performing EVD of Sþ
w Sb

Step 3 Compute EVD of ð1=λmaxSb�SwÞ to find its highest eigenvalue α

Step 4 Compute EVD of ðSwþαIÞ�1Sb to find h eigenvectors wjAℝrt�1 corresponding to the leading eigenvalues, where 1rhrrb and rb ¼ rankðSbÞ. The eigenvectors

wj are column vectors of the orientation matrix W0Aℝrt�h

Step 5 Find orientation matrix WAℝd�h in a d-dimensional space; i.e., W¼U1W'

Table 2
Datasets used in the experimentation.

Datasets Class Dimension Number of
available
samples

Number of
training
samples

Number
of test
samples

Acute Leukemia
[40]

2 7,129 72 38 34

ALL subtype [41] 7 12,558 327 215 112
GCM [42] 14 16,063 198 144 54
Lung

Adenocarci-
noma [43]

3 7,129 96
([67,19,10])a

– –

MLL [44] 3 12,582 72 57 15
SRBCT [45] 4 2,308 83 63 20
Face ORL [37] 40 5,152 400 (10/

class)
– –

Face AR [38] 100 4,980 1400 (14/
class)

– –

a The values in the square parenthesis indicate number of samples per class.

2 Matlab code is available from http://www.staff.usp.ac.fj/~sharma_al/index.
htm.

3 In the k-fold cross-validation procedure [39], we first partition all the
available samples randomly into k roughly equal segments. Then hold out one
segment as validation data and the remaining k�1 segments as training data.
Using the training data, we applied a discriminant technique to obtain orientation
matrix and the validation data to compute classification accuracy. This partitioning
of samples and computation of classification accuracy is carried out k times to
evaluate average classification accuracy.
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gives the best classification performance on the training set. In the
second step, this interval is further divided into 10 subintervals for
fine search and the center value of the subinterval that gives the
best classification performance is used as the final value of the
regularization parameter. Thus, in this procedure, a total of
20 α values are investigated. The regularization parameters com-
puted by CV-RLDA technique on various datasets are shown in
Appendix D.

The classification accuracy on all the datasets using the above
mentioned techniques are shown in Table 3 (the highest classifica-
tion accuracies obtained are depicted in bold fonts). It can be seen
from Table 3 that out of 8 datasets used, the number of times the
highest classification accuracy obtained by NLDA is 2, CV-RLDA is
5, PILDA is 1, DLDA is 1, PCAþLDA is 3, ULDA is 2, EFR is 4 and
DRLDA is 6. In particular, DRLDA performs better than CV-RLDA for
most of the datasets shown in Table 2 (it outperforms CV-RLDA for
3 out of 8 datasets, shows equal classification accuracy for
3 datasets and is inferior to CV-RLDA in the remaining 2 datasets).
Note that the CV-RLDA technique when implemented in an ideal
form (i.e., when α is searched in the range ð0;1Þ with infinitely
small step size) should give in principle better results than the
DRLDA technique. Since it is not possible for practical reasons (i.e.,
computational cost is infinitely large), a finite range is used in CV-
RLDA technique. As a result, DRLDA technique is performing here
better in terms of classification accuracy for majority of datasets. In
addition, the computational cost of CV-RLDA technique (with α
being searched in the finite range) is considerably higher than the
DRLDA technique as shown in Table 4. Here, we measure the CPU
time taken by its ‘Matlab’ program on a Sony computer (core i7
processor at 2.8 GHz).

Furthermore, various techniques using artificial data are
experimented. For this, we have created a 2-class problem with
initial dimensions d¼ 10, 25, 30, 50, and 100. In order to have ill-
posed problem, we generated only 3 samples per class. The
dimensionality is reduced from d to 1 for all the techniques and
then nearest neighbour classifier is used to evaluate the perfor-
mance in terms of classification accuracy. For each dimension d,
the data is created 100 times to compute average classification

accuracy. Table 5 depicts the average classification accuracy over
100 runs. It can be observed from Table 5 that EFR technique is not
able to perform because of scarce samples. The DRLDA technique
and CV-RLDA technique are performing similar. Pseudoinverse
technique (PILDA) is performing the lowest as there is not enough
information in the range space of scatter matrices.

We have also carried out sensitivity analysis with respect to the
classification accuracy. For this purpose, we use Acute Leukemia
dataset as a prototype and contaminated the dataset by adding
Gaussian noise. We then applied techniques again to evaluate
classification performance by using nearest neighbor classifier. The
generated noise levels are 1%, 2%, 5% and 10% of the standard
deviation of the original feature values. The noisy data has been
generated 10 times to compute average classification accuracy. The
results are shown in Fig. 1. It can be observed from Fig. 1 that for
low level noise the degradation in classification performance is not
enough. But when the noise level increases the classification
accuracy deteriorates. The performance of PILDA and DLDA tech-
niques are lower than other techniques. However, most of the
techniques try to maintain the discriminant information in the
noisy environment.

6. Discussion

In order to compare the performance in terms of classification
accuracy we compared 7 well known techniques with DRLDA.
These techniques compute the orientation matrix W by utilizing
different combinations of informative spaces (i.e., null space of SW ,
range space of SW and range space of SB). Each informative space
contains a certain level of discriminant information. Theoretically,
it is effective to utilize all the informative spaces for the computa-
tion of orientation matrix for better generalization capability.
How well a technique is combining these spaces would determine
its generalization capability. It has been shown that usually the
null space of SW contains more discriminant information than
the range space of SW [6,8,22,34]. Therefore, it is likely that a
technique that utilizes null space of SW effectively, may perform

Table 3
Classification accuracy (in percentage) on datasets using various techniques.

Database NLDA CV-
RLDA

PILDA DLDA PCAþLDA ULDA EFR DRLDA

Acute
Leukemia

97.1 97.1 73.5 97.1 100.0 97.1 100.0 100.0

ALL subtype 86.6 95.5 62.5 93.8 80.7 82.1 86.6 93.8
GCM 70.4 74.1 46.3 59.3 59.3 66.7 68.5 70.4
Lung Adeno. 81.7 81.7 74.2 72.0 81.7 80.7 83.9 86.0
MLL 100.0 100.0 80.0 100.0 100.0 100.0 100.0 100.0
SRBCT 100.0 100.0 85.0 80.0 100.0 100.0 100.0 100.0
Face ORL 96.9 97.2 96.4 96.7 92.8 92.5 96.7 97.2
Face AR 95.7 96.3 97.3 96.3 94.9 95.8 97.3 97.3

Table 4
The comparison of cpu time (in seconds) of CV-RLDA and DRLDA techniques.

Database CV-RLDA CPU Time DRLDA CPU Time

Acute Leukemia 4.68 0.07
ALL subtype 1021.9 1.90
GCM 265.0 1.26
Lung Adeno. 57.9 0.48
MLL 13.6 0.24
SRBCT 17.0 0.08
Face ORL 7,396.1 7.41
Face AR 739,380 89.9

Fig. 1. Sensitivity analysis of various techniques on Acute Leukemia dataset at
different noise levels. The y-axis depicts average classification accuracy and x-axis
depicts the techniques used. The noise levels are 1%, 2%, 5% and 10%.

Table 5
Classification accuracy (in percentage) on artificial dataset using various
techniques.

Dimension NLDA CV-RLDA PILDA DLDA PCAþLDA ULDA EFR DRLDA

10 84.3 87.2 66.2 87.8 85.7 84.3 – 87.2
25 95.0 96.7 58.2 96.3 93.7 95.0 – 97.2
30 96.0 97.8 52.8 95.8 96.2 96.0 98.0
50 98.8 99.2 49.5 99.2 98.7 98.8 – 99.2

100 100 100 50 99.5 99.8 100 – 100
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better (in generalization capability) than a technique which does
not use the null space of SW .

From the techniques that we have used the NLDA technique
employs null space of SW and range space of SB. Whereas PILDA,
DLDA and PCAþLDA techniques employ range space of SW and
range space of SB. Provided the techniques extract the maximum
possible information from the spaces they employed then NLDA
should beat PILDA, DLDA and PCAþLDA techniques. From Table 3,
we can see that NLDA is outperforming PILDA in 7 out of 8 cases.
Comparing the classification accuracies of NLDA and DLDA, we can
see that NLDA is outperforming DLDA in 4 out of 8 cases and in
2 cases the performance are identical. In a similar way NLDA is
surpassing PCAþLDA in 4 out of 8 cases and in 3 cases the
performance are identical. On the other hand, the ULDA technique
also employs the same spaces as of NLDA technique, however, the
classification performance of ULDA is inferior to NLDA (only in
1 out of 8 cases ULDA is beating NLDA). This means that
orthogonal W is more effective than uncorrelated W.

The other three techniques (CV-RLDA, EFR and DRLDA) employ
three spaces; namely, null space of SW , range space of SW and
range space of SB. Intuitively, these three techniques contain more
discriminant information than above mentioned 5 techniques.
However, different strategies of using the three spaces would
result in different level of generalization capabilities. In CV-RLDA,
the estimation of regularization parameter α depends upon the
range of α values being explored (which is restricted due to limited
computation time), the cross-validation procedure (e.g. leave-one-
out, k-fold) being employed and the classifier used. On the other
hand, EFR and DRLDA techniques do not have this problem. The
EFR technique utilizes an intuitive model for extrapolating the
eigenvalues of range space of SW to the null space of SW . This way
it captures all the spaces. However, the model used for extrapola-
tion is rather arbitrary and it is not necessary that it is an optimum
model. The DRLDA technique captures the information from all the
spaces by deterministically finding the optimal α parameter from
the training samples. From Table 3, it can be observed that EFR is
surpassing CV-RLDA in 3 out of 8 cases and exhibiting identical
classification accuracies in 2 cases. Similarly, DRLDA is outperform-
ing CV-RLDA in 3 out of 8 cases and giving equal results in 3 cases.
From Tables 3 and 4, we can also observe that though the
classification accuracy of CV-RLDA is high (which depends on
the search of the regularization parameter), its computational time
is extremely large.

Thus we have shown that DRLDA technique is performing
better than other LDA techniques for the SSS problem. We can
intuitively explain its better performance as follows. In the DRLDA
technique, we are maximizing the modified Fisher’s criterion; i.e.,
the ratio of between-class scatter and within-class scatter (see Eq.
(1)). To get the α parameter, we are maximizing the difference
between the between-class scatter and within-class scatter (see
Eq. (4)). Thus, we are combining two different philosophies of LDA
mechanism in our DRLDA technique and this is helping us in
getting better performance.

7. Conclusion

The paper presented a deterministic approach of computing
regularized LDA. It avoids the use of the heuristic (cross-validation)
procedure for computing the regularization parameter. The techni-
que has been experimented on a number of datasets and compared
with several popular techniques. The DRLDA technique exhibits
highest classification accuracy for 6 out of 8 datasets and its
computational cost is significantly less than CV-RLDA technique.

Appendix A

In this appendix, the generalization capabilities of Zhao’s model
and Friedman’s model of CV-RLDA are demonstrated on several
datasets. In order to do this, first we project the original feature
vectors onto the range space of total-scatter matrix as a pre-
processing step. Then we employ reduced dimensional within-
class scatter matrix Ŝw for the two models of CV-RLDA (see Section
4.1 for details about reduced dimensional matrices). In the first
model of CV-RLDA, Sw is approximated as Ŝw ¼ SwþαI and in the
second model Sw is approximated as Ŝw ¼ ð1�αÞSwþαI. For
brevity, we refer the former model of CV-RLDA as CV-RLDA-1
and the latter model as CV-RLDA-2. Table A1 depicts the classifica-
tion performance of these two models. The details of the datasets
and the selection of the regularization parameter α can be found in
Section 4.

It can be seen from Table A1 that CV-RLDA-1 exhibits relatively
better classification performance than CV-RLDA-2.

Appendix B

In this appendix, for RLDA technique we show the sensitivity of
classification accuracy when selecting the regularization para-
meter, α. For this purpose we use four values of α. These are
δ¼ ½0:001; 0:01; 0:1;1�, where α¼ δ� λW and λW is the maximum
eigenvalue of within-class scatter matrix. We applied 3-fold cross-
validation procedure on a number of datasets and shown the
results in Table B1.

It can be observed from the table that the different values of
the regularization parameter give different classification accura-
cies and therefore, the choice of the regularization parameter
affects the classification performance. Thus, it is important to
select the regularization parameter correctly to get the good
classification performance.

To do this, a cross-validation approach is usually opted. The α
parameter is searched in the pre-defined range and the value of α
which gives the best classification performance on the training set
is selected. It is assumed that the optimum value of α will give the
best generalization capability; i.e., the best classification perfor-
mance on the test set.

Table A1
Classification accuracy (in percentage) on test set using CV-RLDA-1 and CV-RLDA-2
techniques.

Database CV-RLDA-1 CV-RLDA-2

Acute Leukemia 97.1 97.1
ALL subtype 95.5 86.6
GCM 74.1 70.4
MLL 100.0 100.0
SRBCT 100.0 100.0

Table B1
Classification accuracy (in percentage) using 3-fold cross-validation procedure (the
highest classification accuracies obtained are depicted in bold fonts).

Database δ¼ 0:001 δ¼ 0:01 δ¼ 0:1 δ¼ 1

Acute Leukemia 98.6 98.6 98.6 100
ALL subtype 90.3 90.3 86.0 69.2
GCM 72.7 74.3 76.5 59.0
Lung Adeno. 81.7 80.7 85.0 80.7
MLL 95.7 95.7 95.7 95.7
SRBCT 100.0 100.0 100.0 96.2
Face ORL 96.9 96.9 96.9 96.9
Face AR 95.8 97.9 96.3 81.8
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Appendix C

Corollary 1. The value of regularization parameter is non-nega-
tive; i.e., αZ0 for rwrrt , where rt ¼ rankðST Þ and rw ¼ rankðSwÞ.

Proof 1. From Eq. (1), we can write

J ¼ wTSbw
wTðSwþαIÞw ; ðA1Þ

where SbAℝrt�rt and SwAℝrt�rt . We can rearrange the above
expression as

wTSbw¼ JwTðSwþαIÞw ðA2Þ
The eigenvalue decomposition (EVD) of SW matrix (assuming

rwort) can be given as

Sw ¼UΛ2UT, where UAℝrt�rt is an orthogonal matrix,

Λ2 ¼ Λ2
w 0
0 0

" #
Aℝrt�rt and Λw ¼ diagðq21; q22;…; q2rw ÞAℝrw�rw are

diagonal matrices (as rwort). The eigenvalues q2k40 for k¼ 1;2;
…; rw. Therefore,

S0w ¼ SwþαIð Þ ¼UDUT; where D¼ Λ2þαI

or D�1=2UTS0wUD
�1=2 ¼ I ðA3Þ

The between class scatter matrix Sb can be transformed by
multiplying UD�1=2 on the right side and D�1=2UT on the left side
of Sb as D�1=2UTSbUD

�1=2. The EVD of this matrix will give

D�1=2UTSbUD
�1=2 ¼ EDbE

T; ðA4Þ
where EAℝrt�rt is an orthogonal matrix and DbAℝrt�rt is a
diagonal matrix. Eq. (A4) can be rearranged as

ETD�1=2UTSbUD
�1=2E¼Db; ðA5Þ

Let the leading eigenvalue of Db is γ and its corresponding
eigenvector is eAE. Then Eq. (A5) can be rewritten as

eTD�1=2UTSbUD
�1=2e¼ γ; ðA6Þ

The eigenvector e can be multiplied right side and eT on left
side of Eq. (A3), we get

eTD�1=2UTS0wUD
�1=2e¼ 1 ðA7Þ

It can be seen from Eqs. (A3) and (A5) that matrixW¼UD�1=2E
diagonalizes both Sb and S0w, simultaneously. Also vector
w¼UD�1=2e simultaneously gives γ and unity eigenvalues in
Eqs. (A6) and (A7). Therefore, w is a solution of Eq. (A2).
Substituting w¼UD�1=2e in Eq. (A2), we get

J ¼ γ; i.e., w is a solution of Eq. (A2).
From Lemma 1, the maximum eigenvalue of expression

ðSWþαIÞ�1Sbw¼ γw is γm ¼ λmax40 (i.e., real, positive and finite).
Therefore, the eigenvectors corresponding to this positive γm
should also be in real hyperplane (i.e., the components of the
vector w have to have real values). Since w¼UD�1=2e with w to
be in real hyperplane, we must have D�1=2 to be real.

Since D¼ Λ2þαI¼ diagðq21þα; q22þα;…; q2rw þα; α;…; αÞ, we
have

D�1=2 ¼ diagð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q21þα

q
;1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q22þα

q
;…;1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2rw þα

q
;1=

ffiffiffi
α

p
;…;1=

ffiffiffi
α

p Þ:

Therefore, the elements of D�1=2, must satisfy 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2kþα

q
40

and 1=
ffiffiffi
α

p
40 for k¼ 1;2;…; rw (note rwort); i.e., α cannot be

negative or α40. Furthermore, if rw ¼ rt then matrix Sw will be a
non-singular matrix and its inverse will exist. In this case,
regularization is not required and therefore α¼ 0. Thus, αZ0 for
rwrrt . This concludes the proof.

Appendix D

In this appendix, we show computed value of CV-RLDA tech-
nique. The value of α is computed by first doing a coarse search on
a predefined range to find a coarse value. After this, a fine search is
conducted using this coarse value to get the regularization para-
meter. In this experiment, we use α¼ δ � λw where δ¼ ½10�4;1�
and λw is the highest eigenvalue of within-class scatter matrix. The
values are depicted in Table D1. In addition, we have also shown
regularization parameters computed by DRLDA technique as a
reference.
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