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subcellular localization prediction performance. However, relying solely on GO, this problem remains
unsolved. At the same time, the impact of other sources of features especially evolutionary-based
features has not been explored adequately for this task. In this study, we aim to extract discriminative
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localization prediction accuracies by up to 6.4% better than previous studies including the studies that
used GO for feature extraction.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Most proteins can only function in one specific place in the cell
(e.g. nucleus, membrane) while some other proteins can function
in several places in the cell (Chou, 2013). For a given protein, to
function properly, it needs to be in one or a few specific locations
in the cell as it malfunctions in all other places (Emanuelsson et al.,
2000). Therefore, protein subcellular localization prediction is
considered an important step towards protein function prediction
and consequently, drug design (Emanuelsson et al., 2000; Chou
and Elrod, 1999; Chou and Shen, 2007a). Among all kind of
proteins, bacterial proteins are among the most important proteins
to determine their functions due to the wide range of both harmful
and useful roles they play in biological interactions (Xiao et al.,
2011a). Bacteria are categorized as a kind of prokaryotic micro-
organism that can be divided into two groups, namely: Gram-
positive and Gram-negative. Some bacteria can cause a wide range
of diseases while some others play the role of catalyst in biological
interactions. Some bacteria are also widely used to produce
antibiotics (Gardy and Brinkman, 2006).

The exponential increase in the number of sequenced proteins
and the much slower rate of determining protein structure using
experimental approaches highlights the demands for a fast com-
putational approach to address this problem as an alternative to
experimental methods (Chou and Shen, 2007a). Among the
computational approaches, pattern recognition-based methods
have attained the most promising results. Since the introduction
of the protein subcellular localization prediction over two decades
ago, a wide range of pattern recognition-based approaches have
been proposed to solve this problem (Nakai and Kanehisa, 1991,
1992; Nakashima and Nishikawa, 1994). The performance of
a pattern recognition technique to address protein subcellular
localization prediction problem depends on the classification
technique as well as features being used (Mei, 2012; Li et al,
2012; Hu et al., 2012; Sharma et al., 2013a; Tantoso and Li, 2008;
Fan and Li, 2012).

To tackle this problem, a wide range of classification techniques
have been implemented and used (Chou and Shen, 2007a, 2006a;
Chou et al., 2010; Chou and Shen, 2008; Wan et al., 2013; Chou and
Cai, 2002; Yu et al,, 2013; Nanni et al., 2013a, 2013b; Shen and
Chou, 2007; Huang and Yuan, 2013). Among these classifiers,
Support Vector Machine (SVM) (Wan et al., 2013; Yu et al., 2013;
Pierleoni et al., 2011; Du and Yu, 2013; Matsuda et al., 2005) or
K-Nearest Neighbor (KNN) based classifiers (Chou et al., 2010, 2012;
Shen and Chou, 2010a; Chen et al., 2013a, 2012) have attained the
most promising results. However, the most significant enhance-
ments in protein subcellular localization prediction have been
achieved by improving the feature extraction techniques rather
than improving on the classification techniques being used
(Tantoso and Li, 2008).

In general, extracted features for this problem can be categor-
ized into sequential, physicochemical, structural, evolutionary, and
Gene Ontology-based (GO) features (Ashburner et al., 2000). Early
studies have relied on sequential-based features which are
extracted from the alphabetic sequence of proteins such as
occurrence of amino acids along the protein sequence (occurrence
feature group), or percentage of the occurrence of the amino
acids along the protein sequence (composition feature group)
(Nakai and Kanehisa, 1992; Nakashima and Nishikawa, 1994;

Matsuda et al., 2005; Zhang et al., 2013). To add more information
about the physical (e.g. size of the amino acids (Nanni et al.,
2013b)), and chemical (e.g. hydrophobicity (Pierleoni et al., 2011))
properties of the amino acids as well as information about the
structure of the proteins (predicted secondary structure of the
proteins (Hu et al., 2012; Li et al., 2012; Tahir et al.,, 2014)),
physicochemical and structural information has been added to
the sequential-based features. Adding these features obtained
better results than relying solely on sequential-based features.
However, with these features, protein subcellular localization
prediction accuracy has remained limited (Nanni et al., 2013b;
Li et al., 2012).

Later studies have used evolutionary-based features as more
informative features to address protein subcellular localization. This
information has been mainly extracted from the substitution prob-
abilities of the amino acids along the protein sequence from Position
Specific Scoring Matrix (PSSM) (Chou and Shen, 2007b; Nanni et al,
2012; Sun et al, 2010). However, relying on PSSM for feature
extraction, protein subcellular localization still has room for improve-
ment. The main reason is that previous studies failed to capture local
discriminatory information embedded in PSSM properly. They have
mainly tried to extract this local information using the protein
sequence as a single block which has failed to achieve this goal
(Nanni et al., 2013b, 2013a; Dehzangi et al., 2014a).

The most significant enhancement for protein subcellular locali-
zation prediction accuracy has been achieved by using Gene Ontology
(GO) for feature extraction (Chou et al., 2010; Wan et al.,, 2013;
Pacharawongsakda and Theeramunkong, 2013; Mei, 2012; Chou et
al.,, 2011; Xiao et al., 2011a; Lin et al., 2013; Wu et al,, 2011). The GO
describes the properties of genes in organisms. The GO database was
initially established to represent molecular function, biological
process and cellular components of proteins. Despite its importance,
GO has three main drawbacks. First, extracting GO for proteins
produces a large number of features (over 18,000) which needs
further process and filtering to extract discriminatory features
(Pacharawongsakda and Theeramunkong, 2013; Mei, 2012). Second,
the GO information for new proteins is unavailable and many
studies use homology-based approaches to extract GO for these
proteins which introduces inaccuracy (Wan et al., 2013; Mei, 2012).
Finally, GO provides information regarding the functioning of the
proteins which includes prior knowledge and is not considered as an
ab-initio feature source (Huang and Yuan, 2013; Tang et al., 2013).
Hence, GO needs further investigation and filtering to be used as
a reliable source for feature extraction purposes.

As realized by a series recent publications (Chen et al., 2013a, b;
Fan et al,, 2014; Guo et al., 2014; Liu et al., 2014; Qiu et al., 2014b,
2014a; Ding et al., 2014; Xu et al., 2014) and called for by Chou in
Chou (2011), to establish a really useful statistical predictor for a
biological system, we need to consider the following procedures:
(i) construct or select a valid benchmark dataset to train and test
the predictor; (ii) formulate the biological samples with an
effective mathematical expression that can truly reflect their
intrinsic correlation with the target to be predicted; (iii) introduce
or develop a powerful algorithm (or engine) to operate the
prediction; (iv) properly perform cross-validation tests to objec-
tively evaluate the anticipated accuracy of the predictor; and
(v) establish a user-friendly web-server for the predictor that is
accessible to the public. Below, let us describe how to deal with
these steps one-by-one.”
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In this study, we aim to explore potential discriminatory infor-
mation embedded in PSSM to tackle protein subcellular localization.
To capture this information, we propose two segmentation-based
feature extraction techniques, namely: segmented distribution
method to capture local density and distribution information and
segmented auto covariance method to capture local information
about the interaction and correlation of neighboring amino acids.
These feature groups have attained promising results in similar
studies (Dehzangi et al., 2014a, 2013b, 2013c, 2014b). Furthermore,
we employ the occurrence feature group to capture global informa-
tion from evolutionary information embedded in PSSM and to
complement local information extracted using the segmented
distribution and the segmented auto covariance features (Taguchi
and Gromiha, 2007). In this manner, we propose a new reliable
method that captures the potential discriminatory information of
the evolutionary-based features for protein subcellular localization.

We also employ an SVM classifier which is considered among
the best classification techniques used for this problem and has
obtained consistent results using segmentation-based features. By
applying SVM to our extracted features, we achieve 88.2% and
80.0% prediction accuracies for Gram-positive and Gram-negative
protein subcellular localizations, respectively. These results are
3.2% and 6.4% better than previously reported results for Gram-
positive and Gram-negative protein subcellular localization which
have also used GO for feature extraction (Huang and Yuan, 2013;
Pacharawongsakda and Theeramunkong, 2013).

2. Benchmarks

In this study, we use two benchmarks that have been widely
used in the literature for Gram-positive and Gram-negative sub-
cellular localizations. For the Gram-positive subcellular localiza-
tion, we use the benchmark that was proposed in Chou et al.
(2010), Chou and Shen (2008), Shen and Chou (2007). This
benchmark consists of 519 different proteins belonging to four
Gram-positive subcellular locations. Among these 519 proteins,
515 belong to one location while four belong to two locations.
Hence, there are 523 (515 + 4 x 2) samples in total. The name of
these four locations and the number of proteins in each location
are shown at Table 1. This benchmark is available at: http://www.
csbio.sjtu.edu.cn/bioinf/Gpos-multi.

For the Gram-negative we also use the benchmark that was
introduced in Chou et al. (2010), Chou and Shen (2008), and Chou
and Shen (2006b). This benchmark consists of 1392 different
proteins belonging to eight Gram-negative subcellular locations.
Among these proteins 1328 belong to one location and 64 to two
locations. Therefore, there are 1456 (1328 + 64 x 2) total samples
in this benchmark. The name of these eight locations and the
number of proteins in each location is provided in Table 2. This
benchmark is available at: http://www.csbio.sjtu.edu.cn/bioinf/
Gneg-multi/.

To classify the multi-location proteins, we use the same method
as used in Huang and Yuan (2013) and Pacharawongsakda and
Theeramunkong (2013). We copy the multilabel proteins as several
single-label samples based on the number of their labels in our
benchmarks. For example a protein with two labels has been used as

Table 1
The name and the number of proteins in each location in Gram-positive bacteria.

No. Subcellular location No. of proteins
1 Cell membrane 174
2 Cell wall 18
3 Cytoplasm 208
4 Extracellular 123

Table 2
The name and the number of proteins in each location in Gram-negative bacteria.

No. Subcellular location No. of proteins
1 Cell inner membrane 557
2 Cell outer membrane 124
3 Cytoplasm 410
4 Extracellular 133
5 Fimbrium 32
6 Flagellum 12
7 Nucleoid 8
8 Periplasm 180

two single label samples. Then, we conduct the classification task. In
this way, by adding extra error, we calculate the worst case as we
might not be able to predict the extra label of a single protein that
has several labels. Calculating a protein's location in this way, we
guarantee that we consider the worst case for our prediction task.

3. Feature extraction method

The main aim of this study is to explore local and global
discriminatory information embedded in PSSM for protein sub-
cellular localization. To do this, we will extract a feature group
from the transformed protein sequence using evolutionary infor-
mation in PSSM, namely: consensus sequence-based occurrence
(AAO). We will also extract three more feature groups directly
from PSSM, namely: semi-occurrence (PSSM-AAO), segmented
distribution (PSSM-SD), and segmented auto covariance (PSSM-
SAC). Therefore, we first need to produce PSSM.

We produce PSSM for our employed benchmarks as the output
(using three iterations to produce PSSM) of the PSI-BLAST algo-
rithm using NCBI's non redundant (NR) database and cut off value
(E) of 0.001 (Altschul et al., 1997). PSSM provides the substitution
probability of a given amino acid based on its position in a protein
sequence with all 20 amino acids. It consists of an L x 20 matrix
(where L is the length of protein sequence and 20 columns
represent 20 amino acids) which includes the log-odds of the
substitution probabilities of the amino acids (Chou and Shen,
2007b; Xu et al,, 2013a). In this study, we have used the log-
odds values to extract our features. It was shown in the literature
that using these numbers produce similar output as using the
probability values (Dehzangi et al., 2014a, 2014b). In the following
subsections these four feature extraction methods will be
explained in detail.

3.1. Consensus sequence-based occurrence (AAO)

This feature group is extracted to provide global information
regarding the occurrence of the amino acids along the protein
sequence with respect to evolutionary information captured in
PSSM. To incorporate evolutionary-based information into the
original protein sequence, we transform it using PSSM in the
following manner. In the protein consensus sequence, amino acids
along the original protein sequence (01,0, ...,0;) are replaced
with the corresponding amino acids with the maximum substitu-
tion probabilities in PSSM (Cq,Cs,...,C;). We first calculate the
index of the amino acid with the highest substitution probability
(based on its position in the protein sequence) as follows:

I;=argmax{P;: 1 <j<20}, 1<i<lI, 1

where P is the substitution probability of the amino acid at
location i with the jth amino acid in PSSM. Then, we replace the
amino acid at ith location of original protein sequence by the Ith
amino acid to form the consensus sequence. After producing the
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protein consensus sequence, we produce the occurrence feature
group as a 20 dimensional feature vector consisting of the number
of occurrence of each amino acid along the protein consensus
sequence. Despite its simplicity, the occurrence feature group has
shown its effectiveness in maintaining global discriminatory
information with respect to the length of a protein sequence
(Dehzangi et al., 2013a; Taguchi and Gromiha, 2007; Dehzangi et
al., 2014b).

3.2. Semi occurrence (PSSM-AAO)

This feature group is directly extracted from PSSM. It aims at
capturing global discriminatory information regarding the sub-
stitution probabilities of the amino acids with respect to their
positions in the protein sequence. PSSM-AAO is produced by
summation of the substitution score of a given amino acid with
all the amino acids along the protein sequence which is calculated
as follows:

PSSM —AAO; = 3}_ 1Py, (i=1,...,20). @)

The main advantage of using the occurrence feature group over
using the composition feature group (in both AAO and PSSM-AAO
feature groups) is that it captures information regarding the length
of the proteins whereas this information is disregarded in the
composition feature group (Taguchi and Gromiha, 2007; Dehzangi
et al., 2013a). To extract the occurrence features, we calculate the
summation of the total substitution score for a given amino acids
while in composition based features, we divide this number with
the length of the amino acids. In fact, in composition method, we
normalize the occurrence of the amino acids, for a given protein,
based on its length. We do not do this normalization which
maintain the general total occurrence of the amino acids based
on their substitution scores. Since we do not normalize by dividing
it by length, it becomes implicitly a part of that feature (Taguchi
and Gromiha, 2007; Dehzangi et al., 2013a; Sharma et al., 2013b;
Dehzangi et al., 2013d).

3.3. Segmented distribution (PSSM-SD)

This method is specifically proposed to add more local dis-
criminatory information about how the amino acids, based on
their substitution probabilities (extracted from PSSM), are distrib-
uted along the protein sequence (Dehzangi and Phon-Amnuaisuk,
2011). We propose this segmentation method in the manner
where segments of a protein sequence are of unequal lengths
and each segment is represented by a distribution feature which
is computed as follows. First, for the jth column in PSSM, we
calculate the total substitution probability Tj=YF'_,P;. Then,
starting from the first row of PSSM, we calculate the partial sum
S1 of the substitution probabilities of the first i amino acids until

1
reaching F,% of the total sum S; = Z:f: ,P;. Using the distribution
factor F,%, we calculate the If, where I} corresponds to the
number of the amino acids such that the summation of their
substitution probabilities is less than or equal to the Fy% of T;.

Similarly, we continue to calculate the partial sum of the first i
amino acids (starting from the first row of PSSM) until reaching

n x Fy% = 50% of the total sum (S, = Z?; 1Pyj) and calculate the I}
corresponding to the number of amino acids such that the
summation of their substitution probabilities is less than or equal
to 50% of T;. Therefore, starting from the first row of PSSM, we

extract n features (I},Ijz,...l]’?) corresponding to the number of
segments until reaching 50% of T;.
We repeat the same process beginning from the last row of

PSSM for the jth column. We calculate the partial sum of the

substitution probabilities of the first i amino acids until reaching
n+1

n x F,%=50% of the total sum which is S, =2§’=1P,-j until

reaching Sy, = Z:’ZL |Pjj, respectively and calculate I *' until reach-
ing I7". I!*! and I}" correspond to the number of amino acids such
that the summation of their substitution probabilities are less than
or equal to F,% and n x F% =50% of T;, respectively (starting
from the last row of PSSM). Therefore, starting from the last row of
the PSSM, we extract n features (I *',I['*2, . ") corresponding
to the number of segments until reaching 50% of T;. In this manner
we extract 2n segmented distribution features for each column in
PSSM. The method used to calculate PSSM-SD feature group from
the jth column of PSSM is shown in Fig. 1. We repeat the same
process for all 20 columns corresponding to 20 amino acids
in PSSM.

In this study, we adopt three values for F;, (5, 10, and 25) to
investigate the effectiveness of the number of segments on the
achieved results and find the suitable number of segments to
explore local discriminatory information embedded in PSSM. We
have used other choices for F, but these three remains the best
representatives of all the choices. To maintain the generality and
simplicity of the segmentation method, we avoid a very specific
segmentation method as it might not be applicable for all cases.
For PSSM-SD feature group, using F, =5, we divide the protein
sequence into 20 segments (n=10 from each side) and extract 400
features in total in this feature group (20 x 20=400). Similarly,
using F, =10 (n=5 from each side) we divide the protein
sequence in to 10 segments and extract 200 features in total
(10 x 20=200) and by using F, =25 (n=2 from each side), we
extract 80 features in total (4 x 20=80).

3.4. Segmented auto covariance (PSSM-SAC)

It was shown that information about the interaction of neigh-
boring amino acids along the protein sequence can play an
important role in providing significant local discriminatory infor-
mation and enhancing protein subcellular localization prediction
accuracy (Chou, 2000; Sharma et al., 2013b). To extract this
information, the concept of auto covariance has been widely used
in the literature in different ways (e.g. bi-gram (Du and Yu, 2013;
Sharma et al., 2013b), tri-gram (Sun et al., 2010; Paliwal et al,,
2014), auto correlation (Dehzangi and Sattar, 2013a, 2013b)).
Among all these methods, pseudo amino acids composition has

jb column of PSSM

50% of Tj -

TT} Fp% of Tj

Fig. 1. The segmentation method used to extract PSSM-SD feature group from the
jth column of PSSM.
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attained the best results to extract local information (Chou et al.,
2010; Wan et al., 2013; Esmaeili et al., 2010; Chou, 2001, 2005,
2011). In the present study, we extend the concept of segmented
distribution features as described in the previous subsection to
compute the auto covariance features from the segmented protein
sequence (Dehzangi et al.,, 2013d). This is done to enforce local
discriminatory information extracted from PSSM.

To extract this feature group, we calculate the auto covariance
of the substitution probabilities of the amino acids using K, as the
distance factor in the following manner. Starting from the first row
of PSSM, for the jth column of PSSM, we calculate K, auto
covariance features for the first Ijl. Similarly, we calculate auto
covariance until reaching the first I]’7 amino acids. Then starting
from the last row of PSSM for the jth column of PSSM, We repeat
the same process for I/ "' and until reaching I (I to I} and '
until reaching to I*" are calculated in the way that is explained in
the previous subsection). This process is repeated for all 20
columns of PSSM and corresponding features are calculated as
follows:

19—m
1 J
P Z (Pi,j_Pave,j) X (P(i+m)j_Pave,j)’

PSSM —seg, i =
T 2

q=1,..2n&m=1,...K, &j=1,....20), 3)

where Py, is the average substitution probability for the jth
column in PSSM. Note that n x K, auto covariance coefficients are
computed in this manner by analyzing PSSM in the downward
direction and n x K, auto covariance coefficients are computed in
this manner by analyzing PSSM in the upward direction (2n x K,
features in total). We also compute the global auto covariance
coefficient (K, features) of PSSM as follows:

1 L—m
l—JSS]V[_ACm,i :m Z (Pi,j_PaveJ) X (P(i+m)J_Pave,j);
- i=1

m=1,...K, &j=1,...,20). (4)

Thus, we have extracted a total of (nK, +nK,+K, = (2n+1)Kp)
auto covariance features in this manner (for the jth column of the
PSSM). For all 20 columns of the PSSM, segmented auto covariance
of the substitution probabilities of the amino acids are extracted
and combined to build the corresponding feature group which will
be referred to as PSSM-SAC (PSSM-seg + PSSM-AC which consists
of 20 x (2n+1) x K, features in total).

We will construct a feature vector consisting of our extracted
features and call it PSSM-S (AAO + PSSM-AAO + PSSM-SAC +
PSSM-SD =PSSM-S). We can represents our feature vector as

F= [fl,lvfz,ls ---afm,lafm+l,27 ---vfp,27fp+1,3v ---»fq,3>fq+1,4v ---van]Ts
€)

where the superscript T indicates the transpose of the vector and
in f,, 4 the first index (n) indicates the number of features and the
second index (4) represents four feature groups used in this study
(AAO, PSSM-AAO, PSSM-SAC, PSSM-SD), respectively. These fea-
ture vector can also be written in the form of Chou's general
PseAAC (pseudo amino acid composition Xu et al., 2013b, 2013a).
To do this, let us write this feature vector as

F= oW Wals (©6)

where €2 is the dimensionality of the feature vector F. The
components of feature vector F can be expressed as the pseudo
amino acid features (Du et al., 2014, 2012; Cao et al., 2013; Lin and

Lapointe, 2013) as follows:

f_ 1 from 1 to me AAO feature group

_, from m+1 to p e PSSM — AAO feature group

_3 from p+1 to q e PSSM — SAC feature group @
_4 from q+1 to ne PSSM — SAC feature group

Ym=

o ==

4. Support Vector Machine

SVM is considered to be one of the best pattern recognition
techniques (Vapnik, 1999). It is also widely used in Bioinformatics
and has outperformed other classifiers and obtained promising
results for protein subcellular localization as well as similar studies
(Dehzangi et al., 2014a, 2014b; Dong et al., 2009; Yang and Chen,
2011; Lyon et al., 2014). It aims to reduce the prediction error rate
by finding the hyperplane that produces the largest margin based
on the concept of support vector theory. It transforms the input
data to higher dimensions using the kernel function to be able to
find support vectors (for nonlinear cases). The classification of
some known points in input space X; is y; which is defined to be
either —1 or +1. If X' is a point in input space with unknown
classification then:

n
Y =sign ( X ayiK (xi,X’)+b> , ®)
i=1

where y’ is the predicted class of point x'. The function K() is the
kernel function; n is the number of support vectors and a; are
adjustable weights and b is the bias. In this study, the SVM
classifier is implemented with the LIBSVM toolbox using the Radial
Basis Function (RBF) as its kernel (Chang and Lin, 2011). RBF kernel
is adopted in our experiments due to its better performance than
other kernels functions (e.g. polynomial kernel, linear kernel, and
sigmoid). RBF kernel is defined as follows:

K(x;,xj) =~ 7%l )

where y is the regularization parameter, X; and x; are input feature
vectors. In this study, the y in addition to the cost parameter C
(also called the soft margin parameter) of the SVM classifier are
optimized using a grid search algorithm which is also implemen-
ted in the LIBSVM package. Despite its simplicity, grid search
has been shown to be an effective method to optimize these
parameters.

5. Results and discussion

We investigate the effectiveness of our proposed approaches in
the following steps. First we study the effective values for the
distribution factor (F,) in the segmented distribution feature group
and the distance factor (Kp) in the segmented auto covariance
feature group. In the second step, we investigate the performance
of our proposed feature groups by evaluating their effectiveness on
the achieved results. Finally, we compare our achieved results with
the previously reported results found in the literature.

5.1. Evaluation methods

To evaluate the performance of our proposed method, we use
Jackknife cross validation as it has been widely used in the
literature for this task and has been shown to be the most
consistent and reliable method (Chou and Shen, 2006a; Shen
and Chou, 2010a; Mohabatkar et al., 2011, 2013; Lin et al., 2008;
Shen and Chou, 2010b; Wu et al, 2012; Xiao et al, 2011b).
Jackknife cross validation iteratively uses all but one sample as
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the training set and the remaining sample for testing until all the
samples are used exactly once for testing purpose. For example, for
a benchmark consists of n samples, Jackknife cross validation uses
n—1 samples as training set and the remaining sample as the
testing data in each iteration. It repeats this process n times until
all the samples in the benchmark has been used once and only
once as the test sample. Hence, it produces exactly one result for
each sample and uses the maximum number of available samples
(n—1) for training in each iteration.

To provide more information about the statistical significance
of our achieved results, we will report Sensitivity, Specificity, and
Matthew's Correlation Coefficient (MCC) for each subcellular loca-
tion as well as for the overall benchmark (Hu et al., 2012; Yu et al.,
2013; Dehzangi et al., 2014b; Marcin et al., 2012). Sensitivity,
which is also referred to as the true positive rate, is a criterion used
to evaluate the model as a metric of its ability to identify the
correct samples. While specificity, which is also referred to as the
true negative rate, is a criterion to specify the ability of the model
to identify negative samples. These two parameters varies
between 0 and 1. Having specificity, and sensitivity equal to
1 represents a fully accurate model while 0 represents a fully
inaccurate. On the other hand, MCC measures the prediction
quality of the model. In other words, it relates sensitivity and
specificity parameters together and measures the correlation of
the classification task. MCC varies between —1 and 1. Having an
MCC equal to 1 represents full classification correlation for the
model, 0 represents a random classification correlation, and —1
represent the full negative classification correlation. These three
parameters are calculated as follows:

e P
Sensitivity = o4 EN x 100, (10)
Specificity = NP * 100, an

(TN x TP)—(IN x FP)

MCC =
/(TP +FP)(TP+FN)(TN +FP)(TN + FN)

(12)

where TP is the number of correctly identified (true positive)
samples, FN is the number of incorrectly rejected samples (false
negative), TN is the number of correctly rejected (true negative)
samples, and FP is the number of incorrectly accepted samples
(false positive). Note that the average sensitivity for the whole
sample set is also equal to the overall prediction accuracy which is
the total number of correctly classified sample (C) over the total
number of samples in the data set (N) and is calculated as follows:

C
N (13)
We will report the overall prediction accuracy as percentage (%).

Q=

5.2. Studying the effective values for F, and K,

In this step, we construct a feature vector consisting of our
extracted features and call it PSSM-S (AAO + PSSM-AAO + PSSM-
SAC + PSSM-SD=PSSM-S). The overall architecture of our pro-
posed model is shown in Fig. 2. We investigate the largest effective
value for K, in the range between 1 and 10 with three different
values for F, (25, 10, and 5) as it was mentioned in Section 3.
Investigating K, until 10 is done because it has been shown as the
effective value for this parameter for similar studies. It was shown
that the effectiveness of this parameter does not vary significantly
for values greater than 10, especially for the segmentation based
method. Also, studying F, for three values of 25, 10, and 5 is done
because these numbers have been widely used in the literature
as the distribution factors to extract distribution-based features.
Hence, we produce 30 (10 values for K, and 3 values for F,) results

for each benchmark. The results achieved for Gram-positive and
Gram-negative bacterial proteins benchmarks are shown in
Figs. 3 and 4, respectively.

Note that we optimized the parameters (the regularization
parameter (y) and the cost parameter (C)) for our employed
classifier (SVM classifier using RBF as its kernel function) using
Gram-positive benchmark and for Fp =5 and Kj, = 10. It is done to
avoid over fitting these two parameters. We have not used Gram-
negative benchmark for optimization of these parameters to be
able to investigate the generality of our proposed methods. The
optimized values for y and C are 0.005 and 3000 which are used
for the rest of our experiments, respectively.

It is shown in Figs. 3 and 4 that by increasing the value of
Kp from 1 to 10 (for all three values of F}), the prediction accuracy
declines. Increasing K, from 1 to 10, increases the number of
extracted features from 100 to 1000. Depending on the problem,
the extra features can provide more discriminatory information
about the correlation of amino acids and consequently increase
the prediction accuracy. At the same time, they can also mask the
impact of other features and increase the possibility of over fitting
depending on the problem. Therefore, the number of feature being
used is directly related to the case study. Our results shown that by
increasing the distance factor, and consequently increasing the
number of features, the prediction accuracy declines. This means
increasing the distance factor (K, from 1 to 10) does not provide
additional discriminatory information. Our achieved results show
that the prediction accuracy is maximum for F, = 25 occurs when
K, =1 while for F, =10 or F, =5 it occurs when K, =2 or K, =3,
respectively.

As we increase the number of segments by reducing the
distribution factor, we also increase the number of features (80
features for F, = 25, 200 features for F, =10, and 400 features for
Fp =5). We can see in Figs. 3 and 4 that increasing the number of
features in PSSM-SD (reducing the distribution factor from 25 to 5)
requires the number of features in PSSM-SAC to be increased in
the beginning to improve the prediction performance (K, from
1 to 3). However, by increasing K, to more than 3, the prediction
accuracy decreases for all 3 values of F,. Therefore, to explore
potential discriminatory information extracted by PSSM-SD and
PSSM-SAC, the number of features in these two feature groups
should be consistent. As soon as the number of features in one of
these feature groups increases significantly compared to the other
one, the prediction accuracy declines.

It is shown in Figs. 3 and 4, for both Gram-positive and Gram-
negative subcellular localization benchmarks, the highest results
are achieved for F, =25 and K, = 1. This is even higher than the
results achieved by using F, =10 and K, =2 or F, =5 and K, =3.
This shows that using F, =25 and K, =1 in PSSM-SD and PSSM-
SAC, we are able to explore potential discriminatory information in
PSSM for these two feature groups. Therefore, we extract PSSM-SD
and PSSM-SAC feature groups for F, =25 and K, =1 as the effective
values for these parameters for protein subcellular localization and for
the rest of our experiments. For PSSM-S using F, =25 and K, =1
which produces 220 features in total (20 AAO features + 20 PSSM-
AAO features + 80 PSSM-SD features + 100 PSSM-SAC features), we
report 88.2% and 80.0% overall prediction accuracies for Gram-positive
and Gram-negative bacterial proteins, respectively (Chou et al., 2010;
Huang and Yuan, 2013; Pacharawongsakda and Theeramunkong,
2013; Chou and Shen, 2010).

5.3. The impact of our extracted features on the achieved results

To provide more insight to our achieved results and also to
investigate the impact of the feature group proposed in this study,
we use SVM on each of the extracted feature groups as well as
their combinations to build PSSM-S. The sensitivity, specificity, and
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Fig. 2. The overall architecture of our proposed approach. The number of features extracted for each feature group is mentioned under its name.
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Fig. 3. The overall accuracies achieved for Gram-positive data set for K, from 1 to
10 and F,, for 5, 10, and 25.
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Fig. 4. The overall accuracies achieved for Gram-negative data set for K, from 1 to
10 and F,, for 5, 10, and 25.

MCC for each subcellular location as well as overall values for
Gram-positive and Gram-negative subcellular localization bench-
marks are shown in Tables 2 and 3. As it is shown in these tables,
the reported results for PSSM-S is better than the results achieved
by using each of the feature groups explored in this study
independently as well as any other combinations of these feature
groups. This highlights the impact of our proposed feature groups.

High values achieved in Table 2 for sensitivity, specificity, and
MCC highlights the statistical significance of our achieved results
and effectiveness of PSSM-S for the Gram-positive protein sub-
cellular localization (Chou et al.,, 2010; Shen and Chou, 2007;
Huang and Yuan, 2013; Chou and Shen, 2010). For the Gram-
negative benchmark, the sensitivity, and MCC are high for the cell
inner membrane, cytoplasm, fimbrium, and periplasm while they
are lower (over 0.5) for the cell outer membrane, and extracellular,
and very low for the Flagellum, and Nucleoid. The poor results for
the cell outer membrane, and extracellular locations are due to the
difficulty of calculating these locations as it was emphasized in
previous studies (Yu et al., 2013; Shen and Chou, 2010a; Marcin et
al., 2012; Chou and Shen, 2010). For the flagellum, and nucleoid
locations, the main reason for very low sensitivity and MCC is the
number of samples belonging to each location. Fewer number of
proteins in these two locations (12 samples in the flagellum, and
8 samples in the nucleoid) compared to the number of samples in
other locations (557 samples in the cell inner membrane, and 410
samples in the cytoplasm) makes this benchmark, inconsistent
(Chou and Shen, 2010). This reduces the prediction accuracy for
locations with fewer samples as the SVM classifier weights these
classes lower. Dissimilar to the cell inner membrane and cyto-
plasm, the performance for the fimbrium location is much better,
despite relatively smaller number of samples in this location (32
samples) compared to the number of samples in the cell inner
membrane location (557 samples). This is because of the simplicity
of predicting samples in this location which has also been shown
in previous studies (Xiao et al., 2011a; Shen and Chou, 2010a;
Pacharawongsakda and Theeramunkong, 2013; Chou and Shen,
2010). As it is shown in Tables 3 and 4, the specificity for all the
locations for Gram-positive, and Gram-negative proteins is near
one which emphasizes the ability of our method to detect negative
samples.

5.4. Comparison with previous studies

To be able to directly compare our results with the best results
reported for these two benchmarks, we also produce our results
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using 10-fold and 5-fold cross validations (Huang and Yuan, 2013;
Pacharawongsakda and Theeramunkong, 2013). In 10-fold cross
validation method, the input data set is randomly divided into 10
subsets (5 subsets for 5-fold cross validation). For each iteration,
the combination of 9 subsets (4 subsets for 5-fold cross validation)
is used as the training set and the remaining subset is used as the
testing set. This process is repeated 10 time (5 times for 5-fold
cross validation) until all the subsets are used once and only once
as the testing set. As it was discusses earlier in subsection 4.1,

Table 3

Jackknife cross validation is considered as the most effective
evaluation method. However, due to its computational expense
(performing n —1 times for a benchmark consisting of n samples),
some studies have used 10-fold or 5-fold cross validations criteria
as an alternative evaluation method (performing 10 times instead
of n—1 times) (Huang and Yuan, 2013; Pacharawongsakda and
Theeramunkong, 2013; Marcin et al.,, 2012; Liu et al, 2012). To
the best of our knowledge, the best results achieved for Gram-
positive and Gram-negative subcellular localizations using similar

The sensitivity, specificity and MCC measurements for our proposed feature groups and their combination to build PSSM-S for Gram-positive bacterial proteins benchmark.

Feature vector Subcellular locations Overall
Cell membrane Cell wall Cytoplasm Extracellular
(Sensitivity)
AAO 0.609 0.167 0.889 0.756 0.734
PSSM-AAO 0.644 0.222 0.918 0.715 0.755
PSSM-SD 0.793 0.167 0.861 0.878 0.818
PSSM-SAC 0.736 0.222 0.894 0.724 0.778
AAO + PSSM-AAO 0.609 0.222 0.923 0.764 0.757
AAO + PSSM-AAO + PSSM-SD 0.851 0.222 0.913 0.935 0.874
PSSM-S 0.862 0.389 0.923 0911 0.882
(Specificity)
AAO 0.917 0.992 0.829 0.878 0.875
PSSM-AAO 0.934 0.990 0.829 0.885 0.883
PSSM-SD 0.940 0.990 0.873 0.928 0.912
PSSM-SAC 0.940 0.986 0.867 0.885 0.899
AAO + PSSM-AAO 0.943 0.992 0.825 0.880 0.883
AAO + PSSM-AAO + PSSM-SD 0.968 0.998 0.911 0.935 0.939
PSSM-S 0.966 0.992 0.914 0.953 0.943
(MCC)
AAO 0.566 0.252 0.705 0.604 0.620
PSSM-AAO 0.622 0.298 0.733 0.583 0.646
PSSM-SD 0.751 0233 0.728 0.777 0.730
PSSM-SAC 0.705 0.265 0.751 0.590 0.681
AAO + PSSM-AAO 0.608 0.318 0.734 0.614 0.650
AAO + PSSM-AAO + PSSM-SD 0.839 0413 0.819 0.831 0.814
PSSM-S 0.843 0484 0.831 0.845 0.826

Table 4

The sensitivity, specificity and MCC measurements for our proposed feature groups and their combination to build PSSM-S for Gram-negative bacterial proteins benchmark
((1) Cell inner membrane, (2) Cell outer membrane, (3) Cytoplasm, (4) Extracellular, (5) Fimbrium, (6) Flagellum, (7) Nucleoid, (8) Periplasm).

Feature vector Subcellular locations Overall
(1) (2) (3) (4) (5) (6) (7) (8)
(Sensitivity)
AAO 0.835 0.565 0.834 0.406 0.625 0 0 0.506 0.717
PSSM-AAO 0.840 0.540 0.861 0.481 0.656 0 0 0.550 0.736
PSSM-SD 0.873 0.508 0.885 0.451 0.625 1] 0 0.583 0.753
PSSM-SAC 0.858 0.524 0.890 0.459 0.656 0 0 0.622 0.757
AAO + PSSM-AAO 0.846 0.516 0.859 0.496 0.719 0 0 0.600 0.745
AAO + PSSM-AAO + PSSM-SD 0.894 0.540 0.883 0.519 0.656 0.083 1] 0.672 0.782
PSSM-S 0.910 0.581 0.890 0.549 0.750 0.167 0 0.678 0.800
(Specificity)
AAO 0.895 0.979 0.840 0.960 0.995 0.994 0.998 0.958 0.904
PSSM-AAO 0.932 0.971 0.867 0.955 0.989 0.997 0.997 0.951 0.924
PSSM-SD 0.951 0.977 0.877 0.953 0.993 0.992 0.996 0.948 0.9343
PSSM-SAC 0.942 0.982 0.865 0.957 0.995 0.993 0.997 0.954 0.929
AAO + PSSM-AAO 0.924 0.978 0.874 0.953 0.992 0.994 0.997 0.955 0.924
AAO + PSSM-AAO + PSSM-SD 0.958 0.977 0.908 0.957 0.992 0.994 0.997 0.945 0.945
PSSM-S 0.957 0.979 0.911 0.959 0.994 0.994 0.997 0.957 0.947
(MCC)
AAO 0.723 0.605 0.636 0.404 0.679 - - 0.512 0.625
PSSM-AAO 0.780 0.552 0.692 0.450 0.610 - - 0.524 0.660
PSSM-SD 0.832 0.551 0.725 0.420 0.638 - - 0.544 0.687
PSSM-SAC 0.808 0.590 0.714 0.439 0.695 - - 0.589 0.688
AAO + PSSM-AAO 0.775 0.564 0.699 0.457 0.690 - - 0.574 0.669
AAO + PSSM-AAO + PSSM-SD 0.858 0.580 0.766 0.487 0.649 0.084 - 0.602 0.727
PSSM-S 0.870 0.618 0.776 0.519 0.733 0.176 - 0.639 0.748
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Table 5

Comparison of our achieved results (%) with the similar studies found in the
literature. For Gram-positive and Gram-negative subcellular localizations, the
results using 5-fold and 10-fold cross validations are used (in column two and
three), respectively.

Study Gram-positive Gram-negative
benchmark benchmark
Huang and Yuan (2013) 83.7 -
Pacharawongsakda and - 73.2
Theeramunkong (2013)
PSSM-S 86.9 79.6

experiment have been achieved by Huang and Yuan (2013) and
Pacharawongsakda and Theeramunkong (2013), respectively.
In Huang and Yuan (2013), they used 5-fold cross validation evalua-
tion criterion while in Pacharawongsakda and Theeramunkong
(2013), they used 10-fold cross validation criterion. Therefore, in this
study, to provide more consistent results, we use Jackknife cross
validation to report our results and also use 10-fold and 5-fold cross
validations for direct comparison of our results with the previously
reported results for these two benchmarks.

Using SVM for PSSM-S with using 10-fold cross validation
evaluation method, we achieve 87.7% and 79.6% overall prediction
accuracies for Gram-positive and Gram-negative subcellular loca-
lization benchmarks, respectively. These are slightly lower than
88.2% and 88.0% overall prediction accuracies using Jackknife cross
validation for these two benchmarks. To compare our results
directly with Huang and Yuan (2013) for the Gram-positive
subcellular localization benchmark, we use 5-fold cross validation
evaluation method and report the results. Using 5-fold cross
validation, we achieve 86.9% prediction accuracy which is 3.2%
better than 83.7% prediction accuracy that was reported in Huang
and Yuan (2013). Similarly, to compare our results directly with
Pacharawongsakda and Theeramunkong (2013) for the Gram-
negative subcellular localization benchmark, we use 10-fold cross
validation evaluation method and report the results. Using 10-fold
cross validation, we achieve 79.6% prediction accuracy which is
6.4% better than 73.2% prediction accuracy that was reported in
Pacharawongsakda and Theeramunkong (2013). These results are
achieved by using only 220 features in total. Note that these
enhancements achieved by using evolutionary-based features
extracted from PSSM compared to the results reported using
features extracted from GO (Wan et al., 2013; Yu et al., 2013;
Pacharawongsakda and Theeramunkong, 2013; Marcin et al., 2012). It
highlights the importance of our method to explore potential
discriminatory information embedded in PSSM and introduce reliable
features to tackle the protein subcellular localization prediction
problem (Table 5).

6. Conclusion and future works

In this study, we have proposed a novel technique to explore
potential discriminatory information embedded in PSSM to tackle
Gram-positive and Gram-negative subcellular localizations. To do
this, we first extracted PSSM matrix for the employed benchmarks
and extract two occurrence-based features and two segmentation-
based feature groups namely, consensus-based occurrence (AAO),
semi-occurrence (PSSM-AAO), segmented distribution (PSSM-SD)
and segmented auto covariance (PSSM-SAC). We then tuned the
distribution parameters (distribution F, and distance factors K,) by
applying SVM to the combination of these four feature groups (called
PSSM-S) and investigated different values for these two parameters.
Finally, by using SVM to our extracted feature groups we showed the
importance of all these feature groups to explore potential

discriminatory information embedded in PSSM. We reported 88.2%
and 80.0% prediction accuracies for Gram-positive and Gram-
negative subcellular localizations using just 220 features in total.

Reported results in this study are 3.2% and 6.4% better than
previously reported results for Gram-positive, and Gram-negative
bacterial proteins benchmarks which also used GO for feature
extraction (Huang and Yuan, 2013; Pacharawongsakda and
Theeramunkong, 2013). These enhancements highlight the effec-
tiveness of our method to explore potential discriminatory infor-
mation embedded in PSSM for protein subcellular localizations
and produce effective, and reliable features for this task.

For our future work, we aim at investigating the impact of segmen-
tation-based feature extraction technique to explore other sources for
feature extractions such as structural, and physicochemical-based
information. Since user-friendly and publicly accessible web-servers
represent the future direction for developing practically more useful
models, simulated methods, or predictors (Chou and Shen, 2009; Lin
and Lapointe, 2013), we shall make efforts in our future work to
provide a web-server for the method presented in this paper.
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