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Abstract: Recent advancement in the pattern recognition field stimulates 
enormous interest in Protein Fold Recognition (PFR). PFR is considered as a 
crucial step towards protein structure prediction and drug design. Despite all 
the recent achievements, the PFR still remains as an unsolved issue in 
biological science and its prediction accuracy still remains unsatisfactory. 
Furthermore, the impact of using a wide range of physicochemical-based 
attributes on the PFR has not been adequately explored. In this study, we 
propose a novel mixture of physicochemical and evolutionary-based feature 
extraction methods based on the concepts of segmented distribution and 
density. We also explore the impact of 55 different physicochemical-based 
attributes on the PFR. Our results show that by providing more local 
discriminatory information as well as obtaining benefit from both 
physicochemical and evolutionary-based features simultaneously, we can 
enhance the protein fold prediction accuracy up to 5% better than previously 
reported results found in the literature. 

Keywords: protein fold recognition; feature selection; mixture of feature 
extraction models; segmented-based distribution; segmented-based density; 
evolutionary-based features; physicochemical-based features. 
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1 Introduction 

Proteins can be categorised into finite number of groups called fold based on their major 
tertiary structure. It has been shown that proteins in the same fold share similar 
functionality. Therefore, being able to accurately classify a protein into its appropriate 
fold is considered as an important step towards protein structure prediction and drug 
design. In biological terminology, this problem is defined as Protein Fold Recognition 
(PFR). Despite recent advancements, PFR still remains an unsolved issue for 
bioinformatics and biological science especially for low homology protein sequences. In 
pattern recognition perspective, PFR is viewed as solving a multi-class classification 
task. The PFR procedure includes feature extraction, attribute selection and classification 
of proteins. During the past two decades, a wide range of classification techniques have 
been proposed and used successfully for the PFR (Ding and Dubchak, 2001; Damoulas 
and Girolami, 2008; Deschavanne and Tuffery, 2009; Nanni et al., 2010; Dehzangi and 
Karamizadeh, 2011; Kavousi et al., 2011; Geng et al., 2012; Dehzangi and Sattar, 2013; 
Habibi et al., 2013; Hsieh et al., 2013; Sharma et al., 2013a; Zangooei and Jalili, 2013). 
However, the most significant enhancements for this problem have been achieved by 
using attribute selection and feature extraction rather than relying on the classification 
techniques (Chen and Kurgan, 2007; Shamim et al., 2007; Dong et al., 2009; Ghanty and 
Pal, 2009; Shen and Chou, 2009; Chou, 2011; Haddow et al., 2011; Yang and Chen, 
2011; Dehzangi and Phon-Amnuaisuk, 2011; Dehzangi et al., 2013a; Dehzangi et al., 
2013b; Sharma et al., 2013b). Features that have been used for PFR can be generally 
categorised into three groups namely, sequential-based, physicochemical-based  
and evolutionary-based features. Early studies relied mainly on sequential-based  
(also called compositional-based) features for PFR. These features are extracted based  
on the alphabetic sequence of the proteins. Sequential-based features provide crucial 
information about the arrangement of the amino acids in a protein sequence. However, 
sequential-based features have two main drawbacks. First, when the sequential similarity 
is low then the recognition performance is low. Second, they do not incorporate any 
physicochemical-based information. Therefore, later studies shifted their focus to use  
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features extracted from the physicochemical-based attributes to address these two issues. 
Physicochemical-based attributes refer to physical, chemical and physicochemical 
properties of the amino acids and proteins such as hydrophobicity or polarity. The 
features extracted from the physicochemical attributes have an advantage that they do not 
depend on sequential similarity. Hence, the discriminatory information of these features 
is not affected even when the sequential similarity is low (Ghanty and Pal, 2009). The 
Ding and Dubchak study (2001) brought a tremendous attention to the physicochemical-
based features. They used five popular physicochemical-based attributes namely, 
normalised frequency of -helix, hydrophobicity, polarity, polarisability and van der 
Waals volume for feature extraction and significantly outperformed previous studies. 
Their extracted features have also been widely used in the later studies (Shen and Chou, 
2009; Dehzangi et al., 2010b, Dehzangi et al., 2010c; Kavousi et al., 2011; Yang et al., 
2011; Chmielnicki and Stapor, 2012). 

Despite the promising results achieved by using physicochemical-based features, the 
effect of using a wide range of physicochemical-based attributes on PFR has not been 
adequately explored. To the best of our knowledge, the only study that explored the 
impact of a wide range of physicochemical-based attributes has been conducted  
by Gromiha (2005). They explored the impact of 49 different physicochemical-based 
attributes on the folding process. However, they merely extracted the global density 
based on each attributes for each protein (total 49 features were extracted from 49 
attributes). Their extracted features do not reveal adequately the potential local 
discriminatory information of the attributes. 

Recent studies shifted the focus to explore evolutionary-based features for PFR and 
significant improvement in prediction accuracy has been observed (Shamim et al., 2007; 
Kurgan et al., 2008; Dong et al., 2009; Shen and Chou, 2009; Yang and Chen, 2011; 
Dehzangi et al., 2014). Evolutionary-based features are extracted based on the probability 
of substitution of amino acids through their evolution process. To extract these features, 
instead of using original protein sequence, sequential-based features are extracted mainly 
from the Position Specific Scoring Matrix (PSSM) calculated from PSIBLAST (Altschul 
et al., 1997). However, similar to the sequential-based features, evolutionary-based 
features dramatically lose their discriminatory information when the sequential similarity 
rate is low. They also do not incorporate physicochemical-based information. To include 
physicochemical-based information, predicted secondary structure using PSIPRED 
machine (Jones, 1999) were used (Shen and Chou, 2009; Yang and Chen, 2011). 
PSIPRED predicts the secondary structure of the proteins with over 80% prediction 
accuracy. Using PSIPRED helped improving the PFR performance, however, due to the 
limited secondary structure prediction accuracy of PSIPRED, it does not provide reliable 
and adequate information for solving this problem (especially for the prediction accuracy 
over 80% (Nguyen and Rajapakse, 2007; Ghanty and Pal, 2009; Yang et al., 2011)). 

In this study, to explore the highlighted insufficiencies and in order to enhance the 
protein fold prediction accuracy, a mixture of evolutionary-based and physicochemical-
based feature extraction method is proposed. We first transform the protein sequences 
using evolutionary-based information obtained from the PSSM and then extract the 
physicochemical-based features from it. This approach enables us to obtain benefit from 
both the evolutionary-based and physicochemical-based information simultaneously. 
Therefore, intuitively we are able to provide more information for PFR. Thereafter, we 
explore 55 different physicochemical-based attributes and propose two novel feature  
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extraction methods (based on segmented density and segmented distribution) for PFR. To 
study the effectiveness of the proposed schemes, four classifiers namely, AdaBoost.M1, 
Random Forest, Naive Bayes and Support Vector Machine (SVM) are used. We first, 
analyse the prediction accuracy of the explored attributes considering the proposed 
feature extraction methods. Based on this analysis, we obtain eight different feature sets 
consisting of extracted features from the selected attributes. Then we concatenate two 
feature groups extracted based on the concept of composition and auto-covariance of the 
amino acids obtained directly from the PSSM to add more sequential-based and 
evolutionary-based information to our extracted features. As a result, these features 
capture more sequential, physicochemical and evolutionary information simultaneously. 
Finally, we explore the performance of the employed classifiers on these feature sets  
and found that SVM attains the best results. Then by using SVM, we show the protein 
fold prediction accuracy to be 5% better than previously reported results found in the 
literature. 

2 Benchmarks and physicochemical-based attributes 

In this study, we use two popular benchmarks to evaluate and assess the generality and 
performance of our proposed methods. To be able to directly compare our results with 
the state-of-the-art approaches found in the literature, we use the extended version of the 
Ding and Dubchak (2001) (DD) benchmark called EDD. We extract EDD from 1.75 
Structural Classification of Proteins (SCOP) (Murzin et al., 1995) consisting of  
3418 proteins with less than 40% sequential similarity belonging to the same 27-folds 
used in the DD benchmark. Note that due to the large number of duplications in the DD 
benchmark and its inconsistencies with new version of the SCOP (Dehzangi and Phon-
Amnuaisuk, 2011; Yang and Chen, 2011), this benchmark is not explored in this study. 
In addition, we used the TG benchmark introduced by Taguchi and Gromiha (2007). This 
benchmark consists of 1612 proteins with less than 25% sequential similarity belonging 
to 30 different folds that was extracted from 1.73 SCOP. 

We also study 55 different physicochemical-based attributes as listed in Table 1 and 
explored their effectiveness on PFR. In Table 1, column three shows the attributes’ 
names and column one shows their corresponding numbers. From here onwards, we use 
the numbers to define the corresponding attributes. These attributes are taken from the 
APDbase (Mathura and Kolippakkam, 2005), the AAindex (Kawashima et al., 2008) and 
Gromiha’s study (2005). The list and the numerical valued (normalised) calculated for 
each physicochemical-based attribute with respect to its references is provided in the 
Supplementary Material. In this experimental study, the aim is to explore the potential of 
each attribute to enhance the PFR performance. We also aim to address the issue of 
multi-referencing by finding the best reference for a specific attribute (given a feature 
extraction method). For instance, hydrophobicity has attributes number 1, 8, 9 and 11 
(Table 1) and polarity has attribute numbers 13 and 55 (Table 1) and it is not clear which 
one would perform the best given the feature extraction method. To the best of our 
knowledge this issue has not been studied adequately in the literature which will be 
described in Section 5. We have also provided the supplementary data showing the 
normalised and real values assigned to each amino acid based on the studied attributes. 
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Table 1 Names and number of the explored attributes in this study 

No. Reference Attributes 

1 (Casari and Sippl, 1992) Structure derived hydrophobicity value 

2 (Charton and Charton, 1982) Polarisability 

3 (Chou and Fasman, 1978) Normalised frequency of -helix 

4 (Chou and Fasman, 1978) Normalised frequency of -strand 

5 (Chou and Fasman, 1978) Normalised frequency of  turn 

6 (Cowan and Whittaker, 1990) Hydrophobicity at ph 7.5 by HPLC 

7 (Dawson, 1972) Size 

8 (Eisenberg et al., 1984) Consensus normalised hydrophobicity scale 

9 (Engelman et al., 1986) Hyd. index base on helix in membrane 

10 (Nelson and Cox, 2008) Molecular weight 

11 (Fauchere and Pliska, 1983) Hydrophobic parameter 

12 (Fauchere et al., 1988) Van Der Waals volume 

13 (Grantham, 1974) Polarity (driven from amino acids) 

14 (Nelson and Cox, 2008) Volume 

15 (Ponnuswamy et al., 1980) Compressibility 

16 (Gromiha, 2005) Average long range contact energy 

17 (Gromiha, 2005) Average medium range contact energy 

18 (Gromiha, 2005) Long range non bounded energy 

19 (Gromiha, 2005) Mean RMS fluctuational displacement 

20 (Gromiha, 2005) Refractive index 

21 (Gromiha, 2005) Solvent accessible reduction 

22 (Gromiha, 2005) Total non bounded energy 

23 (Gromiha, 2005) Unfolding entropy change of hydration 

24 (Gromiha, 2005) Unfolding hydration heat capacity change 

25 (Guo et al., 1986) Retention coefficient (retention times PH= 7.0) 

26 (Guy, 1985) Amino acids partition energy 

27 (Nelson and Cox, 2008) PKa-COOH 

28 (Hopp and Woods, 1981) Hyd. value (driven from free amino acids) 

29 (Hutches, 2010) Absolute entropy 

30 (Hutches, 2010) Entropy of formation 

31 (Janin, 1979) Buried and accessible molar fraction ratio 

32 (Janin, 1979) Energy of transfer from inside to outside 

33 (Karplus and Schulz, 1985) Flexibility for one rigid residue 

34 (Krigbaum and Komoriya, 1979) Side chain interaction parameter 

35 (Krigbaum and Komoriya, 1979) Side chain volume 

36 (Kyte and Doolitle, 1982) Hydropathy index 

37 (Manavalan and Ponnuswamy, 1978) Average surrounding hydrophobicity 

38 (Meirovitch et al., 1980) Average reduced distance for side chain 
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Table 1 Names and number of the explored attributes in this study (continued) 

No. Reference Attributes 

39 (Meirovitch et al., 1980) Side chain orientation angle 

40 (Miyazawa and Jernigan, 1985) Ave number of nearest neighbor in chain 

41 (Miyazawa and Jernigan, 1985) Average Volume of surrounding residues 

42 (Miyazawa and Jernigan, 1985) Hyd. scale (contact energy derived from 3D data) 

43 (Fauchere and Pliska, 1983) Partition coefficient 

44 (Ponnuswamy et al., 1980) Average gain in surrounding hydrophobicity 

45 (Ponnuswamy et al., 1980) Surrounding hydrophobicity in -helix 

46 (Ponnuswamy et al., 1980) Surrounding hydrophobicity in -sheet 

47 (Ponnuswamy et al., 1980) Surrounding hydrophobicity in  turn 

48 (Ponnuswamy et al., 1980) Surrounding hydrophobicity in folded form 

49 (Ponnuswamy et al., 1980) Average number of surrounding residues 

50 (Rao and Argos, 1986) Membrane buried helix parameter 

51 (Rose et al., 1985) Mean fractional area loss (f) 

52 (Vihinen et al., 1994) Flexibility 

53 (Wolfenden et al., 1981) Hydration potential (transfer vapor to water at ph 7.0) 

54 (Zimmerman et al., 1968) Bulkiness 

55 (Zimmerman et al., 1968) Polarity (driven from amino acids in proteins) 

3 Feature extraction approaches 

In this study, we aim to propose a mixture of feature extraction model that  
incorporate sequential-based, physicochemical-based and evolutionary-based information 
simultaneously. In the proposed mixture model, we first find the consensus sequences 
from the original protein by using PSSM. This step embeds sequential-based and 
evolutionary-based information. Then we extract physicochemical-based features from 
this consensus sequence. In this way, we obtain information from all the three sequential-
based, physicochemical-based and evolutionary-based features. As it will be shown later, 
this approach provides more discriminatory information compared to the conventional 
method. 

3.1 Consensus sequence extraction 

In this study, PSSM obtained by running PSIBLAST on our employed benchmarks 
(using NCBI’s non-redundant (NR) protein database and the cutoff E-value set to 0.001). 
PSSM consists of two L  20 (L is the length of a protein) matrices namely, PSSM_cons 
and PSSM_prob matrices. PSSM_cons and PSSM_Prob matrices respectively give the 
log-odds and normalised probability of the substitution score of an amino acid with other 
amino acids depending upon their positions. In the previous studies, the consensus 
sequence (C1,C2,C3,,CL) was extracted in the way that an amino acid in the original 
sequence (O1,O2,O3,,OL) was replaced by the amino acid that had the highest 
substitution score in the PSSM_cons matrix mainly. Let Sij be the substitution score of an 
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amino acid i with an amino acid j in the PSSM_cons, then the index Ii of the amino acid 
with the highest substitution score in the PSSM for the i-th amino acid in a protein 
sequence is given as follows: 

= { :1 20},1i ijI argmax S j i L     (1) 

The original amino acid in a protein sequence is then replaced by the th
iI  amino acid  

(as they are ordered in the PSSM). By exploring the PSSM_cons matrix, we observed 
that for the case when there is an unknown amino acid in the original protein sequence, 
the results of the PSSM_cons matrix for this specific unknown protein is a row with all 
the elements are equal to –1. Therefore, relying solely on this matrix does not provide 
any information about these unknown amino acids. On the other hand, for a given 
protein, if a similar sequence is detected in the in NR database, the substitution score of 
these unknown amino acids change in the PSSM_prob matrix (if no hit is found, the 
probabilities will be equal to zero which rarely occurs.). Therefore, by considering the 
PSSM_prob instead of the PSSM_cons, we can effectively address the issue of unknown 
amino acids. Furthermore, due to the case that the PSSM_cons consists of log-odds of the 
substitution score, it is more probable to find multiple values in this matrix as the 
maximum value which reduces the chance of choosing the best candidate for the 
replacement in the consensus sequence (conventionally, it was chosen randomly among 
the maximum values). On the other hand, the occurrence of multiple maximum 
substitution score for an amino acid based on its position is much less frequent (more 
accurately distinguished due to the better precision) in the PSSM_prob (normalised 
probability of substitution score). 

Therefore, based on our observation we propose a novel approach for consensus 
sequence extraction. In this approach, for each amino acid, we first check the 
PSSM_prob. In the case that a unique maximum is found in this matrix, it will be 
replaced the amino acids in the original sequence. Otherwise, we refer to the PSSM_cons 
to check weather there is a unique maximum can be found. In case that there is a unique 
maximum is in PSSM_cons, it will be replaced the amino acid in the sequence. 
Otherwise, the first maximum in the PSSM_prob will be replaced within the original 
sequence. To address the issue of unknown amino acids, we merely rely on the 
PSSM_prob. In case that a maximum probability of the substitution score spotted in this 
matrix, the nominated amino acids is replaced the unknown amino acid in the original 
sequence. In the case that the PSSM_prob is zero (no hits found in the NR dataset),  
the unknown amino acid is transferred to the consensus sequence, unchanged. Using  
our proposed approach, we reduce the number of unknown amino acids in the consensus 
sequence for the EDD benchmark from 360 to 2 (two unknown amino acids in one 
protein). 

As a result, we are able to produce a more precise and accurate consensus sequence 
compared to the previously used method. We also address the issue of unknown amino 
acids using evolutionary-based information that have not been addressed adequately in 
the previous studies. In continuation, it will be shown that the consensus sequence 
extracted using the proposed method in this study also provides more discriminatory 
information compared to the previous methods used for this task. 



   

 

   

   
 

   

   

 

   

    A mixture of physicochemical and evolutionary-based feature extraction approaches 123    
 

    
 
 

   

   
 

   

   

 

   

       
 

3.2 Physicochemical-based feature extraction method 

As it was discussed earlier in the introduction section, despite the importance of the 
physicochemical-based features, the impact of a wide range of the physicochemical-
based attributes has not been explored adequately for the PFR. In most of the cases, 
either a few popular attributes were used (Ding and Dubchak, 2001; Shamim et al., 2007; 
Dehzangi and Phon-Amnuaisuk, 2011) or when a wider range of attributes are explored, 
the adopted feature extraction method did not explore the potential local discriminatory 
information of the attributes adequately. For example, the global density feature based on 
each attribute employed by Gromiha (2005) captures only global information. In this 
paper, we use more sophisticated features to capture local information from the 
physicochemical-based attribute sequence. Two such feature extraction methods are 
proposed here based on the concepts of segmented density and segmented distribution to 
provide more local discriminatory information for the PFR. Proposed approaches aim to 
provide better understanding about the studied features for this problem. 

3.2.1 Segmented density 

This method is mainly proposed to add more local discriminatory information based on 
the density of a given attribute. In this approach, we first transform the original protein 
sequence to the protein consensus sequence using PSSM. Then, we assign numerical 
values to the amino acids along the protein consensus sequence based on a given 
physicochemical attribute (R1,R2,R3,,RL). transform the original protein sequence to 
consensus sequence by using PSSM and then we assign numerical values to the amino 
acids based on a given physicochemical-based attribute. Then the sequence is segmented 
(using 5% segmentation factor) by dividing it equally into 20 segments. This value of 
segmentation factor is considered in this study because the shortest protein in our 
benchmarks consists of 23 amino acids and to have at least one amino acid in each 
segment. Choosing 5% segmentation factor also showed better performance than using 
10% and 25% segmentation factors which were explored in our previous studies 
(Dehzangi and Phon-Amnuaisuk, 2011; Dehzangi et al., 2013a) and also were 
experimentally investigated by the authors and its results are provided and attached to 
this article as the Supplementary Material. The expression for segmented density can be 
given as follows: 

=1
_ =

M

i
i

seg density

R
D

M


 (2) 

where M (=L  (5/100)) is the length of each segment. This gives a set of 20 segmented-
density features. To this set, we add the global density feature to make a final set of  
21 (= 20 + 1) density features. The expression for global density is given as follows: 

=1
_ =

L

i
i

glob density

R
D

L


 (3) 
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3.2.2 Segmented distribution 

As mentioned earlier, in the segmented density approach, the segments of a given protein 
sequence are of equal lengths and each segment is represented by a density feature given 
in equation (2). In this section, we propose another segmentation method where segments 
of a protein sequence are of unequal lengths and each segment is represented by a 
distribution feature which is computed as follows. We first compute the total sum of 

attribute values over the protein sequence which is equal to 
=1

=
L

ii
T R . Then, we start 

from the left hand side of the protein sequence and compute the partial sum of attribute 

values for the first I amino acids which is given by 
=1

=
I

ii
P R . Using the distribution 

factor K (which is a parameter investigated in this study), we find out the maximum 
value (1)

maxI  of index I such that partial sum P is less than or equal to K% of total sum T. 

Thus we can say that the first (1)
maxI  amino acids of the protein sequence contribute to K% 

of the total sum T. We use (1)
maxI  to define the ending location of the first segment, while 

its beginning point is taken to be 1. The distribution feature of this segment is given by 
(1) /maxI L . In a similar manner, we find out the number of first (2) (3) (50/ ), ,..., K

max max maxI I I  amino 

acids of the protein sequence that contribute to 2K%,3K%,,50% of T, respectively. 
Indices (2) (3) (50/ ), ,..., K

max max maxI I I  are used to define the ending locations of segments 2,3,...,50/K, 

respectively; while the beginning location of all these segments remains to be 1. The 
distribution features for these segments are computed as ( ) / , =2,3,...,50/i

maxI L i K . Note 

that we have thus computed 50/K distribution features by processing the protein sequence 
from the left to the right direction. We repeat this process from right to left direction to 
get another set of 50/K  features. Thus, the total of 2  (50/K) = 100/K  distribution 
features are computed in this study. This procedure is shown in Figure 1. The distribution 
factor (K) is a parameter which is determined here experimentally. For this, three values 
of K (5, 10 and 25) are investigated. 

Figure 1 Segmented distribution-based feature extraction method 

 

To this set of 100/K distribution features, we add the global density feature to provide 
more global information. Therefore, we have a total of 1 + (100/K) features. Thus there 
will be 21, 11 and 6 features for K = 5, 10 and 25, respectively. 
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The main contributions of the segmented-based density and segmented-based 
distribution feature extraction methods can be highlighted in two following points. First, 
it provides more information based on a given attribute based on the concept of 
segmentation. Therefore, it is able to provides better opportunity to more appropriately 
explore the potential discriminatory information of the studied attributes. It is also able to 
add more local discriminatory information to the previously used methods (e.g., global 
density used by Gromiha (2005)). Second, different to previous studies, instead of 
calculating the distribution from one side or categorising amino acids into subgroups 
based on a given attribute (Ding and Dubchak, 2001; Deschavanne and Tuffery, 2009), 
we calculate the distribution from both sides of the proteins. In this way, instead of 
providing cumulative distribution in the rear side of a protein, we calculate the 
distribution from both sides that shifts the emphasis of the distribution calculation to the 
sides of the proteins. This modification is made due to two main reasons. First, the 
cumulative distribution reduces the general impact of the distribution feature. Second, 
due to the flexibility of the ends of a protein, they can play more crucial role on the 
folding process. Avoiding categorisation of the amino acids into different groups also 
helps to maintain the information that might be lost through simplification (alphabet 
reduction (Ding and Dubchak, 2001; Deschavanne and Tuffery, 2009)). 

3.3 Evolutionary-based features 

In addition to our extracted attributes based on the mixture of the physicochemical and 
evolutionary-based features, we extract two feature groups directly from the PSSM 
namely, Semi-AC and PSSM-AC. The aim of extracting these two feature groups is to 
provide more information based on the sequential and evolutionary-based information. 
Using these feature groups also enable us to explore the discriminatory information of  
all three categories of features simultaneously (sequential, physicochemical and 
evolutionary-based features). In the first method, we calculate semi-composition of the 
amino acids. It is called semi-composition (semi_AC) because instead of using the 
protein sequence directly to calculate the percentage of the occurrence of each amino 
acid, we calculate the average of the substitution score for each amino acids directly from 
the PSSM. The Semi_AC is calculated as follows: 

=1

1
= , ( =1,..., 20)

L

i ij
i

C S j
L
  (4) 

This feature is able to provide more discriminatory information compared to the 
consensus sequence in the sense of extracting the amino acids composition feature group 
(Liu et al., 2012). The second sequential-based feature is extracted based on the concept 
of PSSM-AC which was successfully used for the PFR (Dong et al., 2009). For each 
amino acids, PSSM-AC gives the auto-covariance of the substitution score of a given 
amino acid with other amino acids with at most T distance factor (in this study, T is set to 
10 as it was shown as the most effective distance factor for the PSSM-AC by Dong et al. 
(2009)). PSSM-AC is calculated as follows: 
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where Save, j is the average of substitution scores of the amino acid i with other amino 
acids along the protein sequence. Therefore, in total 20  T features are calculated in this 
feature group. 

4 Classification techniques 

In this study, to explore the performance of the proposed approaches, several 
classification techniques such as, AdaBoost.M1, Naive Bayes, Random Forest and SVM 
are used.The employed classifiers are selected based on their popularity (Chen and 
Kurgan, 2007; Dehzangi et al., 2010b), their diversity in learning techniques (Dietterich, 
2000; Dehzangi et al., 2010a; Dehzangi and Karamizadeh, 2011) and their performances 
in the previous studies found in the literature (Chen and Kurgan, 2007; Gromiha, 2009; 
Jain et al., 2009; Dehzangi et al., 2010b). These methods are briefly described as follows. 

Naive bayes: As a kind of a baysian-based learner is considered as one of the simplest 
classifiers yet attained promising results for many different tasks including PFR. Naive 
bayes is based on the naive assumption of independency of the employed features from 
each other to calculate the posterior probability (Dehzangi et al., 2010a). In most of the 
real world problems, its assumptions is not valid, however, Naive Bayes has showed 
promising performance. It also provides important information about the correlation of 
the employed features. The highest results (55.3%) found in the literature for the TG 
benchmark was achieved using this classifier (Gromiha, 2009). We have used Naive 
Bayes classifier implemented in the WEKA toolbox which is designed for multi-class 
classification tasks (as it was used by Dehzangi et al. (2009) and Gromiha (2009)). 

AdaBoost.M1: Multi-class Adaptive boosting (AdaBoost.Ma) is an extension of  
the AdaBoost method introduced by Freund and Schapire (1995) for multi-class 
classification task. It is considered as the best-of-the-shelf meta-classifier (aims at 
producing a strong classifier by boosting a weak learner using different approaches) and 
attained promising results for different tasks as well as the PFR (Freund and Schapire, 
1996; Dehzangi et al., 2010a). The main idea of the AdaBoost.M1 is to sequentially  
(in Iter iterations) apply a base learner (also called weak learner which refers to a 
classifier that at least performs better than random guess) on the bootstrap samples of 
data, adjust the weights of misclassified samples and enhances the performance in each 
step (Freund and Schapire, 1996). In this study, Adaboost.M1 implemented in WEKA is 
used (Witten and Frank, 2005). The C4.5 decision tree is used as its base learner and the 
number of iterations is set to 100 (Iter = 100) (this is shown as the best parameter for this 
algorithm for the PFR (Dehzangi et al., 2010a; Dehzangi and Phon-Amnuaisuk, 2011).  

Random forest: Is also considered as a kind of meta-learner which recently attracted 
tremendous attention specifically for the PFR (Jain et al., 2009; Dehzangi et al., 2010b). 
Unlike Adaboost.M1, Random Forest is based on the bagging (Breiman, 2001). It applies 
a base learner independently on B different bootstrap samples of data using randomly 
selected subsets of features. Despite its simplicity, it has showed significant potential to 
encourage diversity which is considered as an important factor with profound impact on 
the performance of the meta-classifiers (Dietterich, 2000). Random Forest have been 
successfully used for the PFR and its similar studies and outperformed most of the 
classifiers used for this task (Jain et al., 2009; Dehzangi et al., 2010b). In this study, for 
the Random Forest (implemented in WEKA and designed for multi-class classification 
task) the number of iteration is set to 100 (k = 100) and random tree based on the gain 
ratio is used as its base learner. 
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Support vector machine: Introduced by Vapnik (1999) is considered as the state-of-
the-art classification technique which also attained the best results for the PFR (Dong  
et al., 2009; Yang and Chen, 2011). It aims at minimising the classification error by 
finding the Maximal Marginal Hyperplane (MMH) based on the concept of support 
vector theory. To find the appropriate support vector, it transforms the input data to the 
higher dimension using the concept of the kernel function. Polynomial and Radial Base 
Function (RBF) kernels are considered as the best kernels used for the SVM classifier to 
tackle the PFR. Due to the importance of this classifier as well as its promising 
performance, three different SVM-based classifiers are used to explore our proposed 
approaches. We use SVM with Sequential Minimal Optimisation (SMO) (as a kind of 
polynomial kernel (implemented in WEKA)) in two different experiments in which in the 
first experiment, its kernel degree is set to one and in the second experiment, its kernel is 
set to three (p = 1 and 3). We also use SVM using RBF kernel implemented in LIBSVM 
(Chang and Lin, 2011) with its parameters ( and C) are optimised using SVMgrid 
algorithm which is also implemented in the LIBSVM. For all these three SVM-based 
classifiers, we have used one-versus-one approach to adopt this classifier for multi-class 
classification task. 

5 Results and discussion 

In order to evaluate the performance of our proposed methods, we carried out the 
experiments in two parts. In the first part, we partition the data into training set (having 
3/5 of data) and test set (having 2/5 of data) to simulate the condition of previously 
proposed approaches to study the impact of the physicochemical-based feature extraction 
method (Ding and Dubchak, 2001) and in the second part, we use tenfold cross-
validation procedure on the employed datasets for an exhaustive run and to compare our 
results with the best results reported in the literature for PFR. 

5.1 Part one 

In the first part,our aim is to study the impact of the proposed consensus sequence 
extraction method, extracting physicochemical-based features from the consensus 
sequence rather than original protein sequence and analyse our proposed feature 
extraction methods (segmented density and segmented distribution). 

5.1.1 The impact of the proposed consensus sequence extraction method 

In this section, we evaluate the performance (in terms of classification accuracy) of the 
proposed consensus sequence extraction method. To do this, we first extract features by 
computing frequency of amino acid composition and frequency of amino acid occurrence 
(Taguchi and Gromiha, 2007) from the following three cases: (1) original protein 
sequence; (2) the consensus sequence derived using the conventional way (Yang and 
Chen, 2011) and (3) the consensus sequence derived by using our proposed way. We  
call the extraction of features from case 1, 2 and 3 as Methods I, II and III respectively. 
Next, we compare the classification accuracies of the extracted features using the four 
classifiers (Adaboost.M1, Random Forest, SVM, Naive Bayes). The classification 
accuracies on two benchmarks (EDD and TG) are shown in Table 2. It can be seen from 
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Table 2 that Method III outperforms other methods consistently for all the for classifiers 
on both of the benchmark datasets. Therefore, our proposed method for the consensus 
sequence extraction method is used for the rest of this study. 

Table 2 Comparison of the achieved classification accuracy (%) using Adaboos.M1 (Ada), 
Random Forest (RF), Naive Bayes (NB) and SVM (using SMO and p = 1) to evaluate 
the proposed consensus sequence (Method III) extraction method compared to use of 
original sequence (Method I) as well as previously used method (Method II) 

Composition of the amino acids Occurrence of the amino acids 
Dataset Method 

Ada RF SVM NB Ada RF SVM NB 

Method I 35.9 36.6 32.4 34.9 43.0 42.4 41.2 34.4 

Method II 47.5 46.7 42.2 44.0 55.0 55.4 48.2 41.5 *EDD 

Method III 50.7 50.4 44.4 45.5 55.8 56.7 48.9 42.6 

Method I 32.7 34.4 31.6 29.3 34.9 36.4 33.6 30.1 

Method II 37.4 38.0 34.7 37.1 45.3 44.6 38.6 33.3 *TG 

Method III 41.0 41.3 36.3 39.6 47.0 47.2 38.8 34.4 

5.1.2 The impact of the proposed mixture model 

In this section, we analyse the proposed segmented distribution and segmented density 
feature extraction methods. For segmented distribution factor K which are 5%, 10% and 
25% and we use K = 5% for segmented density. We transform the original protein 
sequence to the consensus sequence using our proposed approach (as discussed in 
Sections 3.1 and 5.1.1) to compare the effectiveness of features extracted from these  
two type of sequences. The dimensionality of a feature vector extracted from an 
original/consensus protein sequence by segmented distribution using K = 5% is 21, using 
K = 10% is 11 and using K = 25% is 5 and by segmented density using K = 5% is 21. 
Therefore, four different ways of extracting features will give four sets of feature vectors. 
These feature vectors are then processed through a classifier to get classification 
accuracy. There are four classifiers used in this study (Adaboost.M1, Random Forest, 
SVM and Naive Bayes). Note that there are 55 attributes and therefore we will get 55 
values of classification accuracies for each method of extracting features and for each 
classifier. These classification accuracies are calculated for the original protein sequences 
as well as for the consensus sequences. Since these values are quite extensive to show 
here in the paper, we present them as the Supplementary Material. 

For presentation, here we first compute the average and maximum of the 
classification accuracy over 55 attributes by using the consensus sequence for a given 
feature extraction approach. Similarly, we then compute the values by using the original 
protein sequence. We then subtract the average classification accuracy obtained by using 
the original protein sequence from the average classification accuracy obtained by using 
the consensus sequence. In a similar manner, we subtract the maximum classification 
accuracies obtained by using the original protein sequence and consensus sequence. The 
results are shown in Table 3. The prediction accuracy achieved using all four employed 
classifiers show that extracting features from the consensus protein sequence consistently 
performs better than using the original protein sequence for feature extraction. Despite 
the small number of extracted features (5, 11 and 21 features) the average and maximum 
prediction performance are significantly increased. The enhancement achieves by using 
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the proposed mixture of feature extraction method also suggests a new approach to obtain 
benefit from the evolutionary information and to provide crucial information about the 
impact of the physicochemical-based attributes on the PFR, simultaneously. 

Table 3 Comparison of the achieved results (%) using explored classifiers to evaluate mixture 
model for feature extraction 

Adaboost.M1 

EDD 

Average 2.0 2.4 2.7 3.0 

Maximum 1.4 3.7 3.2 4.3 

TG 

Average 0.8 1.4 1.3 1.1 

Maximum 1.9 3.5 1.6 0.6 

Random Forest 

EDD 

Average 2.1 2.6 2.60 2.8 

Maximum 3.6 3.8 2.7 2.7 

TG 

Average 1.2 1.2 1.2 1.3 

Maximum 0.2 2.7 1.7 1.6 

SVM 

EDD 

Average 2.0 1.9 2.0 2.2 

Maximum 2.4 0.5 1.1 2.1 

TG 

Average 1.3 0.9 1.0 1.4 

Maximum 1.4 1.0 2.2 1.6 

Naive Bayes 

EDD 

Average 1.6 1.8 1.9 2.6 

Maximum 1.3 1.8 1.5 3.1 

TG 

Average 0.5 0.5 0.4 1.3 

Maximum 0.2 1.7 1.6 3.2 

Notes: In each case, the enhancement of the average values (average mixture – 
average original) and maximum values (maximum mixture – maximum 
original) are shown. The maximum refers to the highest results achieved for a 
specific attributes. From left to right, column shows the performance for 
segmented distribution using 25%, 10% and 5% distribution factor and 5% 
segmented density, respectively. 
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5.1.3 The impact of the segmentation factor on the segmented-based 
distribution method 

In this section we study the impact of segmentation factor on the segmented-based 
distribution method in the following two steps. First, for a given classifier, we calculate 
the average and maximum classification accuracies as it was done in the previous 
subsection. Then for a given classifier, we subtract the maximum and average values 
calculated using segmented-based distribution with K = 25% feature extraction method 
from the average and maximum values calculated using segmented-based distribution 
with K = 10% as well as K = 5%. As it is shown in Table.4, by trivially increasing the 
number of extracted features by adjusting segmentation factor from 25% to 5% and from 
25% to 10%, the enhancements is noticeable. Note that the performance of Naive Bayes 
did not improve due to increase in correlation of the extracted features. Therefore, the 
enhancement of the other three classifiers are shown and compared in this subsection. As 
it is shown in Table.4, the enhancement for the Random Forest and the Adaboost.M1 
classifiers using 5% distribution factor compared to 25% is higher than 25% and 10% 
while for the SVM classifier it is not significant. This phenomenon emphasises the 
impact of each approach based on the classifier being used. 

Table 4 Comparison of the achieved results (%) using Adaboos.M1, Random Forest and SVM 
(using SMO and p = 1) to evaluate the enhancement achieved considering the 
segmentation-based distribution approach 

EDD 

AdaBoost.M1 From 25% to 5% From 25% to 10% 

Average 8.3 5.7 

Maximum 11.3 10.2 

Random Forest From 25% to 5% From 25% to 10% 

Average 7.8 5.6 

Maximum 11.5 9.3 

SVM From 25% to 5% From 25% to 10% 

Average 3.8 2.1 

Maximum 7.1 6.5 

TG 

AdaBoost.M1 From 25% to 5% From 25% to 10% 

Average 6.6 4.3 

Maximum 10.3 7.9 

Random Forest From 25% to 5% From 25% to 10% 

Average 6.9 4.8 

Maximum 12.2 7.3 

SVM From 25% to 5% From 25% to 10% 

Average 3.6 2.1 

Maximum 6.9 7.1 
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5.2 Part two 

In the second part and final stage, we aim to tackle the state-of-the-art approaches used 
for the PFR. Therefore, we have explored the impact of the proposed approaches for the 
employed benchmarks (EDD and TG) using tenfold cross-validation. 

5.2.1 Comparison of the results achieved in this study with the best  
results found in the literature 

In this part, we have extracted eight different feature sets consisting of a combination of 
features extracted from different attributes using our proposed feature extraction methods 
in the following two steps. We first study the performance of a given classifier, based on 
the employed feature extraction method (explored on the TG benchmark). Then, based 
on each classifier, two feature set are constructed such that each feature set consists of 
features extracted using a similar feature extraction method and attained the best results 
for the studied classifier (eight combinations in total). These feature sets have been 
constructed in the manner that maintains the number of employed features remains small. 
In the following paragraph, attributes as well as feature extraction method used to build 
each of our eight feature sets are explained. For simplicity, we refer to each attribute by 
its number as in Table 1. 

The first and second combinations are extracted respectively based on the 
performance of the Adaboost.M1 classifier on the segmented-based distribution  
(with K = 10%) (attribute numbers: 3, 4, 5, 14, 17, 26, 28, 30, 33, 41, 48 = 121 features) 
and the segmented-based density (with K = 5%) feature extraction methods (attributes 
numbers: 1, 3, 4, 20, 54, 55 = 126 features). The third and fourth are extracted based  
on the performances of the Random Forest classifier on the segmented-based density 
(with K = 5%) (1, 3, 16, 17, 41, 55 = 126 features) and the segmented-based distribution 
(with K = 10%) (3, 4, 5, 14, 16, 17, 26, 28, 30, 41, 44, 48 = 132 features) feature 
extraction approaches. The fifth and sixth combinations are extracted based on the 
performances of the SVM classifier on the segmented-based distribution (with K = 25%) 
(1, 3, 4, 5, 17, 27, 29, 30, 31, 33, 35, 37, 38, 39, 40, 41, 44, 47, 48, 55 = 100 features) and 
the segmented-based distribution (with K = 5%) (3, 5, 15,17, 30, 41, 44 = 147 features) 
feature extraction methods. Finally, the seventh and eighth are extracted based on the 
performances of the Naive Bayes classifier on the segmented-based distribution (with  
K = 25%) (1, 3, 4, 5, 14, 16, 17, 27, 29, 30, 31, 32, 33, 37, 38, 39, 40, 41, 44, 47, 48,  
55 = 110 features) and the segmented-based density (with K = 5%) (3, 16, 17, 24, 33,  
42 = 126 features) feature extraction methods. 

It is important to highlight that most of the attributes used to construct these feature 
sets have not been used or adequately explored for the PFR. These attributes individually 
outperform most of the popular attributes used to tackle this problem (e.g., average long 
range contact energy (16), total non bounded energy (22) and mean fractional area loss 
(51)). In many cases, even for similar attributes, usage of references that have not been 
used for this problem (e.g., hydrophobicity scale extracted from the contact energy 
derived from the 3D data (42) for the hydrophobicity attribute) compared to popular 
references (consensus normalised hydrophobicity scale (9)) also showed better 
performance which highlights the demand for revision of current physicochemical-based 
attribute selection approaches. In continuation, the Semi_AC, PSSM_AC feature groups 
as well as the length of the amino acids feature (which attained good results in previous 
studies (Ghanty and Pal, 2009)) are added (221 features in total) to each extracted 
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combination of feature groups (which will be referred as comb_1 to comb_8). As it was 
shown in previous studies (Dong et al., 2009; Yang and Chen, 2011; Chmielnicki and 
Stapor, 2012; Dehzangi et al., 2013b), the SVM classifier attains the best results using 
evolutionary-based features extracted from PSSM and outperforms other classifiers used 
for the PFR. Therefore, in this part, we only report the results attained using SVM. The 
overall architecture of the proposed model is shown in Figure.2. In continuation, three 
SVM-based classifiers applied to the input feature vectors (SVM using SMO kernel with 
p = 1 and p = 3, as well as the SVM using the RBF kernel which its parameters optimised 
in the LIBSVM). 

Figure 2 The overall architecture of the proposed approach 

 

Among the employed SVM-based classifiers, SVM using SMO (p = 1) attains similar or 
in some cases slightly better results compared to the other SVM-based classifiers 
employed in this study which emphasises on the effectiveness of the input feature vector 
(discriminatory information provided by the employed features reduces the dependency 
of the performance on a more complex kernel). We also duplicate the experiments of 
Dong et al. (2009) which outperformed other methods used for the PFR (Shamim et al., 
2007; Deschavanne and Tuffery, 2009; Kavousi et al., 2011; Yang and Chen, 2011). We 
have also extracted the 49-D feature vector introduced by Gromiha (2005) and added the 
Semi_AC, the PSSM_AC and the length of the protein sequence (221 features) to it. 
Then we study the effectiveness of this feature set compared to the combination of 
features extracted in this study using similar classification technique (SVM with SMO  
(p = 1)). The best results achieved in this study, compared to the state-of-the-art results 
reported in previous studies are shown in Table.5. 

As it is shown in Table.5, using the EDD and TG benchmarks, we significantly 
outperformed the results achieved by reproducing the Dong et al. (2009) results. We 
enhance the protein fold prediction accuracy by 5% and 4.8% achieving up to 83.1% and 
63.7% for the EDD and TG benchmarks. These results are achieved using fewer features 
compared to the 4000 features used in the Dong et al. study (2009). We also compare our 
results with the results achieve using 49-D features extracted from the original protein 
sequence as well as the consensus sequence. As we can see, we significantly outperform 
these results (over 23% and 17% for the EDD and TG benchmarks respectively) as well 
which emphasises on the effectiveness of the proposed segmented-density and distribution-
based feature extraction methods. In conclusion, suing our proposed approaches, we 
achieve several goals such as: improving the consensus sequence extraction method as 
well as addressing the issue of unknown proteins; enhancing discriminatory information 
based on the concept of the physicochemical-based features proposing a segmented-
based approach; exploring a mixture model that simultaneously obtains benefit from the 
evolutionary-based and the physicochemical-based features; and finally, enhancing the 
protein fold prediction accuracy over than previously reported results found in the 
literature. 
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Table 5 The best results (%) achieved in this study compared to the best results achieved for 
the PFR 

Study Features (No. of features) Method EDD TG 

(Taguchi and Gromiha, 2007) AAO original sequence (20) LDA 46.9 36.3 

(Taguchi and Gromiha, 2007) AAC original sequence (20) LDA 40.9 32.0 

(Dehzangi and Phon-
Amnuaisuk, 2011) 

Physicochemical (219) SVM 52.8 41.9 

(Ding and Dubchak, 2001) 
Physicochemical (125) 

Physicochemical (125) SVM 50.1 39.5 

(Ghanty and Pal, 2009) Bi-gram (400) SVM 75.2 52.7 

(Ghanty and Pal, 2009) Tri-gram (8000) SVM 71.0 49.4 

(Shamim et al., 2007) Combination of bi-gram  
features (2400) 

SVM 69.9 55.0 

(Deschavanne and  
Tu_ery, 2009) 

PSIPRED and PSSM-based 
features (242) 

SVM 77.5 57.1 

(Gromiha, 2009) Threading (-) Naive Bayes 70.3 55.3 

(Dong et al., 2009) ACCFold_ACC (4000) SVM 78.1 58.9 

(Dong et al., 2009) ACCFold_AC (200) SVM 76.2 56.4 

This study Comb_1 (342) SVM 82.9 63.1 

This study Comb_5 (321) SVM 82.8 63.5 

This study Comb_7 (331) SVM 83.1 63.7 

This study Original sequence (49+221) SVM 44.7 35.7 

This study Consensus sequence (49+221) SVM 59.7 45.9 

6 Conclusion 

In this study, to enhance the protein fold prediction accuracy as well as providing more 
information about the impact of physicochemical-based attributes on the folding process, 
several approaches were proposed. In the first step, a new enhanced consensus sequence 
extraction method was proposed that enhanced the protein fold prediction accuracy 
compared to the previously used methods. It also addressed the issue of unknown 
proteins using evolutionary-based information. In the second step, we proposed two 
different feature extraction methods based on the concepts of segmented-distribution and 
density to provide more local discriminatory information. In the third step, we explored a 
wide range of physicochemical-based attributes (55 attributes) using the proposed feature 
extraction methods and four best-of-the-shelf classifiers were used for this task namely, 
Random Forest, Adaboost.M1, Naive Bayes and SVM. In the next step, we proposed a 
mixture of feature extraction approach to extract physicochemical-based features from 
the transformed protein sequence using evolutionary-based information. Our results 
suggested a new approach to explore physicochemical-based attributes in conjunction 
with evolutionary-based information for PFR. In the final step, by using a combination of 
a wide range of attributes that mostly have not been adequately explored in previous 
studies combined with sequential-based features, we achieved up to 83.1% and 63.7% 
prediction accuracy for the EDD and the TG benchmarks respectively, over 5% and 4.8% 
better than previously reported results found in the literature for these two benchmarks. 
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