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 

Abstract— Objective: In this work, we focused on developing a 

clustering approach for biological data. In many biological 

analyses, such as multi-omics data analysis and genome-wide 

association studies (GWAS) analysis, it is crucial to find groups 

of data belonging to subtypes of diseases or tumors. Methods: 

Conventionally, the k-means clustering algorithm is 

overwhelmingly applied in many areas including biological 

sciences. There are, however, several alternative clustering 

algorithms that can be applied, including support vector 

clustering. In this paper, taking into consideration the nature of 

biological data, we propose a maximum likelihood clustering 

scheme based on a hierarchical framework. Results: This method 

can perform clustering even when the data belonging to different 

groups overlap. It can also perform clustering when the number 

of samples is lower than the data dimensionality. Conclusion: The 

proposed scheme is free from selecting initial settings to begin the 

search process. In addition, it does not require the computation 

of the first and second derivative of likelihood functions, as is 

required by many other maximum likelihood based methods. 

Significance: This algorithm uses distribution and centroid 

information to cluster a sample and was applied to biological 

data. A Matlab implementation of this method can be 

downloaded from the web-link 

http://www.riken.jp/en/research/labs/ims/med_sci_math/. 

 
Index Terms—Hierarchical clustering, maximum likelihood, 

biological data. 

 

I. INTRODUCTION 

HE aim of unsupervised clustering algorithms is to 

partition the data into clusters. In this case, the class label 

information is unknown; i.e., the knowledge regarding the 

state of the nature of samples is not provided and clustering is 

performed by taking into account a similarity or distance 

measure, distribution information or by some objective 

functions. In biological data (e.g. genomic data, transcriptomic 

data) the number of clusters, as well as the location of clusters, 

are unknown. However, the distribution is assumed (generally 
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normal Gaussian) in some cases. Therefore, it would be 

beneficial to develop a scheme that takes into account the 

distribution information as well. 

In the literature, the k-means clustering algorithm has taken 

a dominant place for biological applications. Recently, in 

multi-omics data analysis tools like iCluster and iClusterPlus 

[42], k-means was used as the primary clustering algorithm. In 

cancer research, analysis tools such as ConsensusCluster (CC) 

and CCPlus [43], [62] also use k-means as one of the common 

clustering algorithms. The k-means algorithm has been 

overwhelmingly applied [25], perhaps due to its simplicity and 

ability to achieve a reasonable level of accuracy. However, 

since it uses only the distance between samples to partition the 

data, it is unable to track clusters when samples of different 

groups overlap with each other, which commonly occurs in 

many biological data. Therefore, in such scenarios, k-means 

may not find accurate clusters, leading to erroneous biological 

findings, particularly in cancer subtype analysis, GWAS 

analysis and multi-omics data analysis. Though k-means has 

played an important role in clustering analysis over the years 

(including biological analyses), a growing amount of data 

quantity and complexity requires the development of methods 

that can perform clustering with a greater level of accuracy.  

Apart from the k-means algorithm, several other clustering 

algorithms have also been developed. Some of the clustering 

techniques are briefly summarized here as follows: 1) 

clustering using criterion function, e.g. i) related minimum 

variance criterion, ii) sum-of-squared error criterion, iii) 

scattering criterion, iv) determinant criterion, v) trace 

criterion, vi) invariant criterion [12]; 2) clustering using 

iterative optimization techniques by employing various criteria 

functions [18], [11], [16]; [12]; 3) hierarchical clustering [22], 

[23], [15]; 4) clustering using Bayes classifier [36], [35], [38], 

[31], [5], [48]; 5) iterative maximum likelihood clustering [9], 

[41], [10]; 6) likelihood based hierarchical clustering [4], [15]; 

7) support vector clustering (SVC) [2], [32], [33] and so on. 

Recently, SVC has gained widespread attention in clustering 

[6], [32], [33], [24], [28], [61]. However, for large datasets 

(e.g. biological data), many of these clustering methods 

sometimes fail to find meaningful clusters and are also very 

slow in processing time [30], [26]. For many applications, 

classifiers like maximum likelihood or Bayes classifier are a 

preferred choice. There are various ways to implement these 

clustering methods.  

Since this paper concentrates on the maximum likelihood 
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method, we summarize some implementations of this method. 

The maximum likelihood can be computed in the following 

manners: i) analytical, ii) grid search, or iii) numerical 

analysis. In practical cases, numerical analysis is typically 

performed to find the maximum likelihood estimate.  In this 

approach, an initial value parameter is used in a hill climbing 

algorithm or gradient ascent algorithm (e.g. Newton-Raphson, 

Berndt-Hall-Hall-Hausman (BHHH), Davidon-Fletcher- 

Powell (DFP)) to find the maxima. Maximum likelihood is 

also estimated via an EM algorithm [37], [9], [17], [27], [1], 

[3], [7], [19], [12]. In these schemes, the initial settings can be 

crucial, as a bad choice could lead to unreasonable outcomes.  

Hierarchical approaches are very well-known clustering 

methods. These approaches can be subdivided into two 

categories: agglomerative procedure (bottom-up) and divisive 

procedure (top-down). An agglomerative procedure begins by 

considering each sample as a cluster and at each step, the two 

clusters which are closest to each other under some similarity 

measure are merged. This procedure continues until only one 

cluster exists. This gives a tree structure known as 

dendrogram. A divisive procedure performs clustering in a 

way inverse to the agglomerative procedure. It starts by 

considering one cluster (containing all the data samples) and 

splits the cluster into two clusters at each step until all the 

clusters contain only one sample [29], [12]. In this paper, we 

consider only the agglomerative procedure for hierarchical 

clustering. The hierarchical approach is independent of initial 

parameter settings. It can be carried out by linear or non-linear 

regression models [49], [45], [15]. Usually in these methods, a 

joint likelihood is computed which is a triple integral (of joint 

probability, normal and gamma density functions) and is 

computed by the fourth-order Gauss-Lobatto quadrature [15]. 

This makes the computation quite expensive. In some cases, to 

make computation simpler, a Markov Chain Monte Carlo 

approach is used to estimate the dendritic tree [4].  

Over the years, several hierarchical approaches have been 

proposed. Here we summarize a few schemes.  Single linkage 

or link (SLink) [57] merges two nearest-neighbor clusters at a 

time in an agglomerative hierarchical fashion. It uses the 

Euclidean distance to measure the closeness between two 

clusters (if it is less than an arbitrary threshold). This method 

is very sensitive to data position, sometimes creating issues by 

generating clusters composed of a long chain (known as 

chaining effect). The complete linkage (CLink) hierarchical 

approach [8] depends on the farthest-neighbor and reduces the 

chaining effect. This technique is also sensitive to outliers. 

The use of the average distance could be a way to overcome 

this sensitiveness. This was done in the average linkage 

(ALink) hierarchical approach [59], [34]. It computes the 

average distance between two clusters for linking. Similarly, 

the median linkage (MLink) hierarchical approach [14] uses 

the median distance for linking. In the weighted average 

distance linkage (WLink) hierarchical approach [46], [39], 

cluster sizes are disregarded when computing average 

distances. As a result, smaller clusters will get a larger weight 

in the clustering process [46]. Vaithyanathan and Dom [63] 

developed a model-based hierarchical clustering by utilizing 

an objective function based on a Bayesian analysis. They used 

multinomial likelihood function and Dirichlet priors, and 

applied their strategy on document clustering. Similarly, 

hierarchical clustering of a mixture model was proposed by 

Goldberger and Roweis [20] and applied on scenery images 

and handwritten digits. Their method optimized the distance 

between two Gaussian mixture models. They have assumed 

that the desired number of clusters is predefined. 

In this work, we developed a hierarchical maximum 

likelihood (HML) clustering algorithm. We derive the HML 

method, such that there is no need to compute triple integrals 

or to find first and second derivatives of likelihood functions. 

The proposed technique can also deal with small sample size 

cases, where data dimensionality is higher than the number of 

samples, by considering the range space of covariance 

matrices (of clusters) during the clustering process. Since the 

clustering equations are derived from Gaussian models, the 

algorithm will be more suitable for data that follows a 

Gaussian distribution. We provide mathematical derivation of 

the method. Experiments were conducted on both simulated 

and real data to exhibit the performance of the proposed 

method compared with other state-of-the-art methods.  

II. OVERVIEW OF MAXIMUM LIKELIHOOD CLUSTERING 

In this section, we briefly describe the maximum likelihood 

method for clustering [12]. Let a 𝑑-dimensional sample set be 

𝜒 = {𝐱1, 𝐱2, … , 𝐱𝑛} having 𝑛 unlabelled samples. Let 𝑐 be the 

number of clusters and 𝛺 = {𝜔𝑗} be the state of the nature or 

class label for 𝑗th cluster 𝜒𝑗  (for 𝑗 = 1,2, … , 𝑐). Let 𝛉 be any 

unknown parameter (having mean 𝛍 and covariance 𝛴). Then 

the mixture density is given by 

 

 𝑝(𝐱|𝛉) = ∑ 𝑝(𝐱|𝜔𝑗 , 𝛉𝑗)𝑃(𝜔𝑗)𝑐
𝑗=1                (1) 

 

where 𝑝(𝐱|𝜔𝑗 , 𝛉𝑗) is the conditional density, 𝛉 = {𝛉𝑗} (for 

𝑗 = 1 … 𝑐) and 𝑃(𝜔𝑗) is the a priori probability. The log 

likelihood can be given by joint density 

 

𝐿 = log 𝑝(𝜒|𝛉) = log ∏ 𝑝(𝐱𝑘|𝛉)𝑛
𝑘=1 = ∑ log 𝑝(𝐱𝑘|𝛉)𝑛

𝑘=1     (2) 

 

If the joint density 𝑝(𝜒|𝛉) is differentiable with respect to 𝛉 

then from Equations 1 and 2 

 

 𝛻𝛉𝑖
𝐿 = ∑

1

𝑝(𝐱𝑘|𝛉)
𝑛
𝑘=1 𝛻𝛉𝒊

[∑ 𝑝(𝐱𝑘|𝜔𝑗 , 𝛉𝑗)𝑃(𝜔𝑗)𝑐
𝑗=1 ]     (3) 

 

where 𝛻𝛉𝑖
𝐿 is the gradient of 𝐿 with respect to 𝛉𝑖  . If 𝛉𝑖  and 

𝛉𝑗 are independent and suppose a posteriori probability is 

given as 

 

  𝑃(𝜔𝑖|𝐱𝑘, 𝛉) =
𝑝(𝐱𝑘|𝜔𝑖,𝛉𝑖)𝑃(𝜔𝑖)

𝑝(𝐱𝑘|𝛉)
                  (4) 

 

then from Equation 4, we can see that 
1

𝑝(𝐱𝑘|𝛉)
=

𝑃(𝜔𝑖|𝐱𝑘,𝛉)

𝑝(𝐱𝑘|𝜔𝑖,𝛉𝑖)𝑃(𝜔𝑖)
. 

Substituting this value in Equation 3 and since for any 
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function 𝑓(𝑥) its derivative 𝜕 log 𝑓(𝑥) /𝜕𝑥 = 1/𝑓(𝑥). 𝑓′(𝑥). 

We have 

 

 𝛻𝛉𝑖
𝐿 = ∑ 𝑃(𝜔𝑖|𝐱𝑘, 𝛉)𝑛

𝑘=1 𝛻𝛉𝑖
log 𝑝(𝐱𝑘|𝜔𝑖 , 𝛉𝑖)      (5) 

 

Equation 5 can be equated to zero (𝛻𝛉𝑖
𝐿 = 0) to obtain 

maximum likelihood estimate 𝛉̂𝑖. The solution can therefore 

be obtained by 

 

 𝑃(𝜔𝑖) =
1

𝑛
∑ 𝑃(𝜔𝑖|𝐱𝑘, 𝛉̂)𝑛

𝑘=1                       (6) 

 ∑ 𝑃(𝜔𝑖|𝐱𝑘, 𝛉̂)𝑛
𝑘=1 ∇𝛉𝑖

log 𝑝(𝐱𝑘|𝜔𝑖 , 𝛉̂𝑖) = 0        (7) 

 𝑃(𝜔𝑖│𝐱𝑘, 𝛉̂) =
𝑝(𝐱𝑘|𝜔𝑖,𝛉̂𝑖)𝑃(𝜔𝑖)

∑ 𝑝(𝐱𝑘|𝜔𝑗,𝛉̂𝑗)𝑃(𝜔𝑗)𝑐
𝑗=1

               (8) 

 

For a normal distribution case, the parameter 𝛉 is replaced 

by the unknown mean 𝛍 and covariance 𝛴 parameters in the 

above equations to yield maximum likelihood estimates. In the 

literature, the parameter 𝛉 is iteratively updated to reach the 

final value 𝛉̂ using the hill climbing algorithms.  

III. HML METHOD 

Here we describe the proposed HML method for clustering. 

For 𝑛 samples, the search starts at level 𝑛, where two clusters 

are merged at a time such that the overall likelihood 

maximizes (an illustration is given in Fig. 1). In the 

hierarchical framework, there is no need for initial parameter 

settings and hence the solution is unique in contrast with 

iterative optimization techniques. In order to develop the 

maximum likelihood estimate in the hierarchical framework, 

we address two fundamental issues: 1) what is the criterion 

function; and, 2) what is the distance or similarity measure 

that satisfies the selected criterion function. 

 

 
Figure 1: Illustration of the hierarchical maximum likelihood method. In this 

case, four clusters are given and two closest clusters are to be merged. A 

similarity measure 𝛿𝑖𝑗 is used to find the closeness of clusters. Two clusters 𝜒𝑖 

and 𝜒𝑗 with likelihood functions 𝐿𝑖 and 𝐿𝑗 are merged such the total likelihood 

is maximized.  

 

To investigate these two issues, we defined the class-based 

log-likelihood of two clusters 𝜒𝑖  and 𝜒𝑗  as  

 

 𝐿𝑖 = ∑ log[𝑝(𝐱|𝜔𝑖 , 𝛉𝑖)𝑃(𝜔𝑖)]𝐱∈𝜒𝑖
              (9) 

 

and similarly, 𝐿𝑗 can be derived accordingly. 

 

It is important to know how the class-based log likelihood 

functions (called as log-likelihood here after) change if two 

clusters are merged. For this, suppose mean and covariance of 

𝜒𝑖  and 𝜒𝑗  are defined as 𝛍𝑖, 𝛴𝑖 and 𝛍𝑗, 𝛴𝑗, respectively. The 

mean and covariance functions are expressed as follow: 

 

 𝛍𝑖 =
1

𝑛𝑖
∑ 𝐱𝐱∈𝜒𝑖

                      (10) 

 𝛴𝑖 =
1

𝑛𝑖
∑ (𝐱 − 𝛍𝑖)(𝐱 − 𝛍𝑖)

T
𝐱∈𝜒𝑖

         (11) 

 

where 𝑛𝑖 is the number of samples in 𝜒𝑖 . The expressions 

for 𝛍𝑗 and 𝛴𝑗 can be derived accordingly. If the component 

density is normal and a priori probability is defined as 

𝑃(𝜔𝑖) = 𝑛𝑖/𝑛 (where 𝑛 is the total number of samples) then 

Equation 9 can be written as 

 

   𝐿𝑖 = 𝑛𝑖 log 𝑃(𝜔𝑖) +  

   ∑ log [
1

(2𝜋)
𝑑
2|𝛴𝑖|

1
2

exp [−
1

2
(𝐱 − 𝛍𝑖)

T𝛴𝑖
−1(𝐱 − 𝛍𝑖)]]𝐱∈𝜒𝑖

 

or 

  𝐿𝑖 = −
1

2
𝑡𝑟[𝛴𝑖

−1 ∑ (𝐱 − 𝛍𝑖)(𝐱 − 𝛍𝑖)
T

𝐱∈𝜒𝑖
] −

𝑛𝑖𝑑

2
log 2𝜋  

   −
𝑛𝑖

2
log|𝛴𝑖| + 𝑛𝑖 log

𝑛𝑖

𝑛
  

 

where 𝑡𝑟() is a trace function. Since 𝑡𝑟[𝛴𝑖
−1 ∑ (𝐱 −𝐱∈𝜒𝑖

𝛍𝑖)(𝐱 − 𝛍𝑖)
T] = 𝑡𝑟(𝑛𝑖𝐼𝑑×𝑑) = 𝑛𝑖𝑑, we can write 𝐿𝑖 as 

 

 𝐿𝑖 = −
1

2
𝑛𝑖𝑑 −

𝑛𝑖𝑑

2
log 2𝜋 −

𝑛𝑖

2
log|𝛴𝑖| + 𝑛𝑖 log

𝑛𝑖

𝑛
   (12) 

 

Similarly, 𝐿𝑗 can be formulated. The total log-likelihood for 

𝑐 clusters can be written as 

 

 𝐿𝑡𝑜𝑡 = ∑ 𝐿𝑘
𝑐
𝑘=1                (13) 

 

where 𝐿𝑘 is from Equation 12. 

 

If clusters 𝜒𝑖  and 𝜒𝑗  are merged then the resultant mean and 

covariance can be given as 

 

 𝛍𝑖
∗ =

1

𝑛𝑖+𝑛𝑗
(𝑛𝑖𝛍𝑖 + 𝑛𝑗𝛍𝑗)           (14) 

  

  𝛴𝑖
∗ =

1

𝑛𝑖+𝑛𝑗
[(𝑛𝑖𝛴𝑖 + 𝑛𝑗𝛴𝑗) +

𝑛𝑖𝑛𝑗

𝑛𝑖+𝑛𝑗
(𝛍𝑖 − 𝛍𝑗)(𝛍𝑖 − 𝛍𝑗)

T
]  

                       (15) 

The determinant of 𝛴𝑖
∗ can be written as 

 

  |𝛴𝑖
∗ | =

1

(𝑛𝑖+𝑛𝑗)
𝑑 |𝑄|               (16) 

where 

 

  𝑄 = (𝑛𝑖𝛴𝑖 + 𝑛𝑗𝛴𝑗) +
𝑛𝑖𝑛𝑗

𝑛𝑖+𝑛𝑗
(𝛍𝑖 − 𝛍𝑗)(𝛍𝑖 − 𝛍𝑗)

T
  (17) 

 

�
�

� �
�
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We can now obtain the change in 𝐿𝑖 after merging two 

clusters 𝜒𝑖  and 𝜒𝑗  as 

 

 𝐿𝑖
∗ = −

1

2
(𝑛𝑖 + 𝑛𝑗)𝑑 −

(𝑛𝑖+𝑛𝑗)𝑑

2
log 2𝜋 

   −
(𝑛𝑖+𝑛𝑗)

2
log|𝛴𝑖

∗| + (𝑛𝑖 + 𝑛𝑗) log
(𝑛𝑖+𝑛𝑗)

𝑛
    (18) 

 

After rearranging Equation 18 and from Equation 12, we 

get 

 

  𝐿𝑖
∗ = 𝐿𝑖 + 𝐿𝑗 + (𝑛𝑖 + 𝑛𝑗) log(𝑛𝑖 + 𝑛𝑗) 

−(𝑛𝑖 log 𝑛𝑖 + 𝑛𝑗 log 𝑛𝑗) −
(𝑛𝑖 + 𝑛𝑗)

2
log|𝛴𝑖

∗| 

       +
𝑛𝑖

2
log|𝛴𝑖| +

𝑛𝑗

2
log |𝛴𝑗|       (19) 

 

The value of  |𝛴𝑖
∗| from Equation 16 can be substituted in 

Equation 19, which will give 𝐿𝑖
∗ as 

 

  𝐿𝑖
∗ = 𝐿𝑖 + 𝐿𝑗 + 𝛿𝑖𝑗              (20) 

 

Since 𝛿𝑖𝑗 is a similarity measure to compute the closeness 

between two clusters, it can be multiplied by a constant 

without affecting its decision. Here we multiply the similarity 

by 2 to take out the halves factor which appeared in Equation 

19. We get the similarity measure as 

 

 𝛿𝑖𝑗 = 𝑓𝜆 + 𝑓𝑁                (21) 

 

where 

 

 𝑓𝜆 = 𝑛𝑖 log |𝛴𝑖| + 𝑛𝑗 log |𝛴𝑗| − (𝑛𝑖 + 𝑛𝑗) log |𝑄|  (22) 

 

and  

 

  𝑓𝑁 = (𝑑 + 2)(𝑛𝑖 + 𝑛𝑗) log(𝑛𝑖 + 𝑛𝑗) 

          −2𝑛𝑖 log 𝑛𝑖 − 2𝑛𝑗 log 𝑛𝑗    (23) 

 

So in summary, the two clusters should be merged if the 

similarity 𝛿𝑖𝑗 between the two is maximum compared to all the 

other cluster pairs as this would maximize the likelihood 

function 𝐿𝑡𝑜𝑡 (of Equation 13); in other words, choose cluster 

(𝑖, 𝑗) such that the overall 𝐿𝑡𝑜𝑡 is maximized; i.e., (𝑖∗, 𝑗∗) =

arg max𝑖,𝑗 𝛿𝑖𝑗.  

The second concern for the algorithm is to find the number 

of clusters in the data. If the number of clusters (𝑐) is known, 

then the algorithm can be executed until the desired number 𝑐 

is obtained. If a rough estimate is given (𝑎 ≤ 𝑐 ≤ 𝑏) then the 

𝐿𝑡𝑜𝑡 curve in the range [𝑎, 𝑏] can be considered and 𝑐 can be 

estimated for which 𝐿𝑡𝑜𝑡 is maximum. If no information about 

𝑐 is known, then the algorithm can be run for all clusters [1, 𝑛] 
and the best value can be obtained by using the 𝐿𝑡𝑜𝑡 curve. 

Furthermore, some other functions related to 𝐿𝑡𝑜𝑡 can be 

developed to find the best value of 𝑐. The HML method is 

given in Table 1. 

 

Table 1: Hierarchical Maximum Likelihood (HML) method 
 

1. Let 𝑟 = 1, 𝜒𝑖 = {𝐱𝑖}, 𝛴𝑖 = 𝐼𝑑×𝑑  and 𝛍𝑖 = 𝐱𝑖, 𝑖 =
1,2, … , 𝑛.  

2. While 𝑟 ≤ 𝑛 − 𝑐 (if unknown 𝑐 then 𝑐 = 1). 

3. Find pair 𝜒𝑖  and 𝜒𝑗  for which 𝛿𝑖𝑗 is maximum. 

4. Merge two clusters 𝜒𝑖 ← 𝜒𝑖 ∪ 𝜒𝑗  and delete 𝜒𝑗 . 

Compute 𝐿𝑡𝑜𝑡 after the merger. 

5. Increment 𝑟 and go to step 2. 

 

It can be observed from Table 1 that when 𝑟 = 1 we have 

assumed covariance of a sample to be an identity matrix as it 

is not possible to obtain a non-zero covariance of a cluster 

having only one sample. However, this would reduce 𝑓𝜆 to 

−2 log |𝑄| and 𝑓𝑁 to 2(𝑑 + 2) log 2 (in Equations 22 and 23); 

i.e., the merger of clusters at 𝑟 = 1 mainly depend on 𝑓𝜆 as 𝑓𝑁 

is constant. Therefore, when 𝑟 = 1, we can consider 𝛿𝑖𝑗 = 𝑓𝜆 

(in Equation 21). 

It is possible to have the number of samples in a cluster less 

than the data dimensionality 𝑑. This would lead to a small 

sample size (SSS) problem.  

IV. SMALL SAMPLE SIZE CASE OF THE HML METHOD 

As discussed earlier, if the dimensionality of samples is 

higher than the number of samples in a cluster, it creates an 

SSS problem. In this situation, the covariance matrices will 

become singular and their determinant will become zero [50], 

[51], [52], [53]. Thereby, no solution can be obtained. 

Moreover, if 𝑑 is very large, the computation of the 

covariance matrix is expensive. In this case, the rectangular 

matrix can be computed as follows: 

 

 𝛴𝑖 = 𝐻𝑖𝐻𝑖
T                  (24) 

where 𝐻𝑖 =
1

√𝑛𝑖
𝐻̂𝑖 ∈ ℝ𝑑×𝑛𝑖            (25) 

and 𝐻̂𝑖 = [𝐱1 − 𝛍𝑖 , 𝐱2 − 𝛍𝑖 , … , 𝐱𝑛𝑖
− 𝛍𝑖]      (26) 

 

where 𝐱 ∈ 𝜒𝑖 . The singular value decomposition (SVD) of 

𝐻𝑖  would give 𝑈𝑖𝐷𝑖𝑉𝑖
T. Let the rank of 𝐻𝑖  be 𝑟𝑖. This will give 

𝑟𝑖 non-zero eigenvalues in 𝐷𝑖 . Since 𝛴𝑖 = 𝑈𝑖𝐷𝑖
2𝑈𝑖

T, the 

eigenvalues of 𝛴𝑖 will be squared of the eigenvalues of 𝐻𝑖 . Let 

𝜆𝑖
𝑘 > 0 be the k

th
 eigenvalue of 𝛴𝑖 (where 𝑘 = 1,2, … 𝑟𝑖). Since 

|𝛴𝑖| is same as |𝑈𝑖𝐷𝑖
2𝑈𝑖

𝑇| or |𝐷𝑖
2||𝑈𝑖

𝑇𝑈𝑖| and 𝑈𝑖 is an 

orthogonal matrix, we can write |𝛴𝑖| = |𝐷𝑖
2| = ∏ 𝜆𝑖

𝑘𝑑
𝑘=1 . Now 

computation of 𝛿𝑖𝑗 (Equation 21) can be done by using non-

zero eigenvalues. This, in turn, requires us to solve Equation 

22 as 

 

𝑓𝜆
′ = 𝑛𝑖 ∑ log(𝜆𝑖

𝑘)
𝑟𝑖
k=1 + 𝑛𝑗 ∑ log(𝜆𝑗

𝑘)
𝑟𝑗

k=1
   

        −(𝑛𝑖 + 𝑛𝑗) ∑ log(𝜆𝑞
𝑘)

𝑟𝑞

k=1
      (27) 

 

where 𝜆𝑗
𝑘 is the k

th
 eigenvalue and 𝑟𝑗 is the rank of 𝛴𝑗. 

Similarly, 𝜆𝑞
𝑘  is the k

th
 eigenvalue and 𝑟𝑞  is the rank of 𝑄 

(Equation 17). Since 𝑄 is a symmetric matrix, it can be written 
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as 𝑄 = 𝐻𝑞𝐻𝑞
T. Rectangular matrix 𝐻𝑞  can be computed as 

(from Equation 17) 

 

𝐻𝑞 = [√𝑛𝑖𝐻𝑖 , √𝑛𝑗𝐻𝑗 , √
𝑛𝑖𝑛𝑗

𝑛𝑖+𝑛𝑗
(𝛍𝑖 − 𝛍𝑗)] ∈ ℝ𝑑×(𝑛𝑖+𝑛𝑗+1) (28) 

 

From Equations 25 and 26, we can write Equation 28 as 

 

 𝐻𝑞 = [𝐻̂𝑖, 𝐻̂𝑗 , √
𝑛𝑖𝑛𝑗

𝑛𝑖+𝑛𝑗
(𝛍𝑖 − 𝛍𝑗)]         (29) 

 

Similarly, when dimensionality 𝑑 is very large compared to 

the number of samples per cluster then we have to 

approximate 𝑓𝑁 as the ranks of covariance matrices are no 

longer 𝑑. To approximate 𝑓𝑁, we assume if 𝑑 > 𝑛/4 then the 

rank of covariance (or some confidence limit for eigenvalues 

of covariance) of data could be used instead of 𝑑. We call 

𝑑𝑒𝑓𝑓  the rank of covariance of data (or effective dimension). 

Therefore, in Equation 23 we use 𝑑𝑒𝑓𝑓  in place of 𝑑 when the 

dimensionality is large (as described before). This will 

approximate 𝑓𝑁 as 𝑓𝑁
′ .  

Therefore, rather than computing similarity 𝛿𝑖𝑗 from 

Equation 22, we can compute from Equation 27 and 𝑓𝑁
′  as 

 

 𝛿𝑖𝑗 = 𝑓𝜆
′ + 𝑓𝑁

′                 (30) 

 

As discussed earlier, at the start of the algorithm, when 

𝑟 = 1 (Table 1), all clusters will have 1 sample each and 

covariance for each cluster is assumed to be identity. In this 

case (when 𝑟 = 1), we can use 𝛿𝑖𝑗 = 𝑓𝜆
′  which is basically 

−2 ∑ log 𝜆𝑞
𝑘𝑟𝑞

𝑘=1 .  

To verify if similarity 𝛿𝑖𝑗 (of Equation 30) can work well on 

high dimensional case, we created two random clusters having 

𝑛1 = 100 samples in cluster 1 and 𝑛2 = 50 samples in cluster 

2. The dimensionality was varied as 𝑑 = 2,10 and 2000. 

Cluster 2 is moved from location 1 to location 10 as depicted 

in Fig. 2. At each location, the similarity 𝛿𝑖𝑗 is measured. It is 

expected that as cluster 2 reaches close to cluster 1, the 

similarity 𝛿𝑖𝑗 increases. If the dimensionality 𝑑 is high (𝑑 ≫

𝑛), the same characteristics should be observed.  

 

 
Figure 2: An illustration to verify similarity measurement (using 𝑑 = 2). 

 

(a) 

     
(b) 

 
      (c) 

Figure 3: Behavior of similarity measure at different location with varying 

dimensions 

 

It can be seen from Fig. 3a (𝑑 = 2), that the similarity 𝛿𝑖𝑗 is 

maximized around location 4. A similar performance is 

observed when 𝑑 = 10 (Fig. 3b). If we set 𝑑 to 2000, we 

observe similar characteristics (Fig. 3c) as of  𝑑 = 2 and 

𝑑 = 10. This shows that the similarity measure 𝛿𝑖𝑗 can work 

effectively when the dimensionality is high by providing the 

location

location

location
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same closeness information as when the dimensionality is low.  

V. SEARCH COMPLEXITY OF HML METHOD 

In this section, we briefly describe the number of searches 

required by the agglomerative hierarchical clustering method. 

Since hierarchical clustering is based on the greedy algorithm, 

the search is generally quite expensive, of the order 𝑂(𝑛3). 

However, here we tried to improve the search by efficiently 

handling the similarity matrix, reducing the HML search to 

𝑂(𝑛2).  

Fig. 4 illustrates the HML method using 4 samples. At level 

𝑛 = 4, each sample is a cluster and hence there are 4 clusters. 

The nearest clusters using similarity 𝛿𝑖𝑗 are merged (in Fig. 4a, 

clusters 1 and 4 are merged). At the next level (𝑛 − 1 = 3), 

the nearest clusters are merged again. This process is 

continued. It can be observed that at level 𝑛, distance or 

similarity is measured from a cluster to all other clusters 

giving 
1

2
𝑛(𝑛 − 1) search (Fig. 4b). At any level 𝑛 − 𝑘 the 

search would be 
1

2
(𝑛 − 𝑘)(𝑛 − 𝑘 − 1). Therefore, the total 

search can be given as 

 

 𝑆 =
1

2
∑ (𝑛 − 𝑘)(𝑛 − 𝑘 − 1)𝑛−2

𝑘=0  

      =
1

6
(𝑛 − 1)𝑛(𝑛 + 1) = 𝑂(𝑛3)        (31) 

 
Figure 4a): A dendrogram for HML. 

 

If the two clusters 1 and 4 are merged, we do not need to 

compute 
1

2
(𝑛 − 𝑘)(𝑛 − 𝑘 − 1) distances or similarities (where 

𝑘 = 1 at level 3) in the next level. From Fig. 4c, we can 

observe that from the merged cluster 14, two new distances or 

similarities (𝑑12
∗  and 𝑑34

∗ ) are calculated. However, the 

distance or similarity 𝑑23 is the same as before. Therefore, the 

search can be reduced.  

 

 
         (b)                                      (c) 

Figure 4: b) Distance or similarity computation at level 𝑛 = 4; c): 

Distance or similarity computation after a merger of two clusters for HML. 

 

Consider the computation of the distance or similarity 

matrix when 6 samples are given in a dataset (Fig. 5a).  
         

 
Figure 5: Distance or similarity matrix computation in HML. 

 

At level 6, there are six clusters which would give 15 

distances in a distance matrix D. Suppose clusters 2 and 4 are 

merged at this level. Then rows 2 and 4, and columns 2 and 4 

will be deleted from D. In the next subsequent level, there will 

be 5 clusters. Distances between the merged cluster and all the 

remaining 4 clusters will be computed which will give 𝑑12
∗ , 

𝑑23
∗ , 𝑑24

∗  and 𝑑25
∗  (Fig. 5b).  For all the remaining distances 

those were not deleted at level 6, will have new indices (as 

shown in Fig. 5b) at level 5. This would give a new distance 

matrix 𝐷𝑁𝑒𝑤 with 4 computed distances and 6 remaining 

distances (some with changed indices). Therefore, at level 

𝑛 − 𝑘, the required search is 𝑛 − 𝑘 − 1. The total search can 

now be given as follows: 

  

 𝑆∗ =
1

2
𝑛(𝑛 − 1) + ∑ (𝑛 − 𝑘 − 1)𝑛−2

𝑘=1   

      = (𝑛 − 1)2 = 𝑂(𝑛2)            (32) 
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VI. EXPERIMENTS AND RESULTS 

We carry out analysis on artificial (normal Gaussian) data as 

well as on biological data to evaluate the performance of 

HML.  We divide this section into 3 subsections. Subsection A 

shows the performance of hierarchical methods using 

Gaussian data and microarray data. Subsection B describes the 

𝐿𝑡𝑜𝑡 related curves to estimate number of clusters; and, in 

subsection C we describe the HML clustering method on 

genomic data. We have also given an illustration using four 

clusters (including SVC algorithm) in Supplement 1. 

 

A. Clustering on Gaussian data and gene expression data 

In this section, we use Gaussian data of dimensionality 𝑑 

(similar topology as shown in Suppl. 1, Fig. S1a having 4 

clusters with a total of 400 samples). We generated the data 20 

times (using a different random seed), and for each time, we 

computed clustering accuracy. In order to get a statistically 

stable value, we computed average (mean) clustering accuracy 

over 20 attempts. We carried out this exercise for 

dimensionality 𝑑 = 2 … 500 (2, 3, …, 19, 20, 25, 30, …, 500). 

For comparison purposes, we used various hierarchical based 

clustering methods like SLink, CLink, ALink, WLink and 

MLink. The average clustering accuracies for various methods 

over dimensionality 𝑑 are depicted in Fig. 6. It can be 

observed from Fig. 6 that when the dimensionality is relatively 

low the performance of HML is quite promising over the other 

hierarchical based clustering methods. However, as the 

dimensionality increases, the performance of various methods 

does not improve. For the HML method, the data distribution 

information is captured using covariance matrices of clusters. 

However, when the dimensionality is very large compared to 

the number of samples per cluster then covariance matrix will 

become singular and its determinant will become zero. In this 

case, we need to approximate the covariance matrix to 

overcome the ill-posed matrix issue. Furthermore, in this case 

it is difficult to get distribution information. Therefore, it is 

expected that performance will deteriorate if the 

dimensionality is very large. We can also observe from the 

figure that when the dimensionality is high (𝑑 ≥ 100), many 

clustering methods appear to converge. This is because these 

methods tend to accumulate most of the samples in a small 

number of dominant clusters, missing the other remaining 

clusters. In the case of HML, it estimates the covariance 

matrix of a cluster by considering the eigenvectors 

corresponding to the leading eigenvalues (basically a few non-

zero eigenvalues). Since these few eigenvalues represent the 

dominant orientation of the data distribution, the estimated 

model becomes sensitive towards leading direction.  

Nonetheless, the HML method is able to produce a reasonable 

level of performance compared to other hierarchical based 

clustering methods. 

Next, we generated another set of artificial (normal 

Gaussian) data 50 times (by changing the random seed), and 

produced boxplots for various hierarchical methods over 

selected data dimensionalities. The results are depicted in 

Supplement 2. 

Thereafter, we utilized microarray gene-expression datasets, 

namely acute leukemia [21] and prostate tumor [58] data to 

measure the performance (in terms of clustering accuracy) of 

various clustering methods. The details of these datasets are as 

follows: 

Acute leukemia dataset – this dataset consists of DNA 

microarray gene expression data of human acute leukemias for 

cancer classification. Two types of acute leukemia data are 

provided for classification, namely acute lymphoblastic 

leukemia (ALL) and acute myeloid leukemia (AML). The 

dataset consists of 72 bone marrow samples (47 ALL and 25 

AML) and over 7129 probes. All the samples have 7129 

dimensions and all are numeric. 

Prostate tumor dataset – this is a 2-class problem addressing 

tumor class versus normal class. It contains 77 prostate tumor 

samples and 59 non-tumor (or normal) samples. Each sample 

is described by the expression of 12,600 genes.  
 

 
Figure 6: Average clustering accuracy of various hierarchical based 

clustering methods on Gaussian data. 

 

The expression data need not be Gaussian. In order to vary 

the data dimensionality (number of genes), we utilized Chi-

squared feature selection method to rank the genes. We then 

performed cluster analysis (to evaluate clustering accuracy) on 

dimensionality 𝑑 = 2, 5, 10, 20, 100, 200 and 1000. The 

clustering accuracies on acute leukemia and prostate tumor are 

reported in Tables 2 and 3, respectively. It can be seen from 

Table 2 that CLink, ALink, MLink, WLink and HML 

provided reasonable performance. HML lead when 𝑑 ≤ 20 

and when 𝑑 = 1000. It was able to reach 95.8%. For prostate 

tumor (Table 3), HML was able to achieve 75.7% clustering 

accuracy. It can also be observed that when the dimensionality 

is large, many methods tend to accumulate most of the 

samples in a small number of (in this case one) dominant 

clusters. For example, in the case of acute leukemia dataset 

(Table 2), out of total of 72 samples, most of the methods 

clustered 71 samples to a class and clustered only one sample 

to another class. Consequently, most of the methods showed a 

clustering accuracy of around 66.7%. It appeared to converge 

but in fact it was accumulating most of the samples in the 

wrong cluster. Therefore, increasing the dimension further 

doesn’t produce better results for most of the methods and 

thus we stopped the evaluation at this point.  

dimensions

a
ve
ra
ge
	a
cc
ur
ac
y
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Furthermore, we can see that until 𝑑 = 20 the clustering 

accuracy on prostate tumor dataset (Table 3) by HML was 

around 55%. But when dimensionality increased further 

(𝑑 ≥ 100), the clustering accuracy reached 75.7%. The reason 

for this could be that the gene ranking method (Chi-squared 

method which is a filter-based feature selection scheme) and 

clustering methods are mutually independent techniques. 

Therefore, the genes are ranked independent of the clustering 

method used. For higher dimensionality, HML tries to 

estimate the covariance matrix using the leading eigenvalues 

of the data distribution. It is not necessary that these leading 

eigenvalues correspond to the highest ranked genes (obtained 

by the Chi-squared method). Therefore, increasing the number 

of genes gives new possibility of improving or deteriorating 

the performance of the classifier. This phenomenon can be 

observed in other methods too. In Table 3, CLink produced 

58.1% clustering accuracy when 𝑑 = 2 and when the 

dimension was increased to 𝑑 = 5, it gave 50.7%. However, 

going further up to 𝑑 = 10 gave 61.8% but dropped down 

after 𝑑 = 20. In ALink, higher clustering accuracy is observed 

when 𝑑 = 5 and 𝑑 = 10, but lower for 𝑑 = 2 and 𝑑 ≥ 20. In 

WLink, it is higher for 𝑑 = 5 and 𝑑 = 200, but lower for 

𝑑 = 2 and the remaining dimensions. Also in MLink, 

clustering accuracy is higher for 𝑑 = 5 but lower for 𝑑 = 2 

and 𝑑 ≥ 10.    

 
Table 2: Clustering accuracy on acute leukemia dataset. 

Dim SLink CLink ALink WLink MLink HML 

2 66.7% 84.7% 76.4% 94.4% 94.4% 95.8% 

5 66.7% 81.9% 84.7% 81.9% 81.9% 95.8% 

10 66.7% 81.9% 81.9% 73.6% 73.6% 93.1% 

20 66.7% 73.6% 76.4% 76.4% 66.7% 95.8% 

100 66.7% 68.1% 70.8% 76.4% 81.9% 70.8% 

200 66.7% 66.7% 66.7% 66.7% 66.7% 63.9% 

1000 66.7% 66.7% 66.7% 66.7% 66.7% 76.4% 

 

Table 3: Clustering accuracy on prostate tumor dataset. 

Dim SLink CLink ALink WLink MLink HML 

2 57.4% 58.1% 58.1% 58.8% 58.1% 54.4% 

5 55.2% 50.7% 61.8% 61.8% 61.8% 55.2% 

10 55.2% 61.8% 61.8% 51.5% 54.4% 55.2% 

20 55.2% 61.8% 55.2% 55.2% 55.2% 53.7% 

100 55.2% 61.0% 55.2% 55.2% 55.2% 75.7% 

200 55.2% 50.0% 55.2% 61.0% 55.2% 75.7% 

1000 55.2% 58.8% 55.2% 55.8% 55.8% 71.2% 

 

B. Estimation of the number of clusters 

It is also crucial to estimate number of clusters 𝑐 present in 

the given data. If some prior information (e.g. range of 𝑐) 

about clusters is known then one can estimate 𝑐 close to its 

true value. In some cases, this information is unknown, in that 

situation it is required to investigate all possible levels (in the 

hierarchical framework), so that the samples can be 

thoroughly investigated to estimate 𝑐. In this paper, we 

propose two curves to estimate 𝑐. The first curve is 𝐿𝑡𝑜𝑡 versus 

the levels curve and the second is the difference of 𝐿𝑡𝑜𝑡 

(𝑑𝐿𝑡𝑜𝑡) versus the levels curve. As an illustration, we used a 4 

cluster case (as in Suppl. 1, Fig. S1a). The 𝐿𝑡𝑜𝑡 and 𝑑𝐿𝑡𝑜𝑡 

curves are shown in Figures 7a and 7b. These curves are given 

between levels 1 and 20. At level 𝑙 there are 𝑙 clusters present. 

From Fig. 7a, the 𝐿𝑡𝑜𝑡 curve changes significantly between 

levels 1 and 4, and from 𝑙 = 4 onwards the rate of change in 

𝐿𝑡𝑜𝑡 is low. Therefore, increasing the level further would not 

change the partitioning of data significantly. Thus, 𝑐 can be 

estimated to be 4. However, if finer clusters (i.e., clusters 

having fewer samples) are required then one can consider 

having the level value for which 𝐿𝑡𝑜𝑡 is maximum.  

We have also presented the 𝑑𝐿𝑡𝑜𝑡 curve (Fig. 7b). At level 𝑙, 
the value of 𝑑𝐿𝑡𝑜𝑡 can be given as 

 

 𝑑𝐿𝑡𝑜𝑡(𝑙) =
𝐿𝑡𝑜𝑡(𝑙+1)−𝐿𝑡𝑜𝑡(𝑙)

𝐿𝑡𝑜𝑡(𝑙+1)
× 100        

 (33) 

 

The multiplication by 100 in Equation 33 can be dropped (it 

is given here just for presentation purposes of the plot). The 

𝑑𝐿𝑡𝑜𝑡 curve basically measures the rate of change of 𝐿𝑡𝑜𝑡 

curve. It can be seen from Fig. 7b that after level 4 (𝑙 > 4) the 

curve is not changing much. Therefore, we can estimate 𝑐 = 4 

using 𝑑𝐿𝑡𝑜𝑡 curve.  

 

 
(a) 

 

 
(b) 

Figure 7: a) likelihood 𝐿𝑡𝑜𝑡 plot; b) 𝑑𝐿𝑡𝑜𝑡 curve 
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C. Clustering on genomic data 

In this part, we analyze the HML method on a set of genomic 

data. As discussed before, there are two main concerns in 

clustering: 1) how many clusters are present; and, 2) what are 

the locations of these clusters? It is also interesting to identify 

or remove some sub-population from the data in order to solve 

the issue of population stratification, because the existence of 

unbalanced population stratification between cases and 

controls may produce false positives and negatives in GWAS 

[60], [47] [40], [13]. Here we employ data from a collection of 

7,001 individuals from the BioBank Japan (BBJ) project and 

45 Japanese HapMap (JPT) samples [60]
1
. The total number 

of SNPs was 140,387, genotyped via the Perlegen platform. 

We also incorporated 45 Han Chinese HapMap (CHB) 

samples and merged these data using PLINK v1.9 

(https://www.cog-genomics.org/plink2) on 140,367 common 

SNPs. Prior to PCA, we performed filtering using similar 

criteria as of that used by Yamaguchi et al. [60]. We removed 

SNPs with a call rate < 99%, a MAF < 0.01, and a Hardy-

Weinberg equilibrium (HWE) exact test p-value > 10−6. 

Individuals with missing calls for > 5% of SNPs were also 

removed. After filtering, 6,998 BBJ, 44 JPT and 45 CHB 

samples sharing 117,758 SNPs remained. Consequently, the 

population consists of mainland Japanese (Hondo) having 

6,891 samples, 45 CHB samples and 151 Okinawa samples, 

referred as the Ryukyu (RYU) cluster. Hondo consists of 628 

Kyushu, 908 Kinki, 358 Tokai-Hokoriku, 3,975 Kanto-

Koshinetsu, 466 Tohoku, 512 Hokkaido and 44 JPT samples. 

In this section, the goal is to identify RYU and CHB from 

Hondo so that the Hondo data can be explored for further 

analysis. We first performed PCA on the filtered data using 

the R package SNPRelate [64] to reduce the data 

dimensionality and conduct analysis on 5 dimensional data. 

Linkage disequilibrium (LD) pruning with a threshold of 0.2 

was used to define a representative set of 32,090 SNPs for 

PCA. 

 There are three main clusters on this five dimensional data, 

namely, Hondo, RYU and CHB. We employed this data to 

first carry out clustering analysis to find correctly labelled 

samples of the Hondo, RYU and CHB clusters using various 

clustering methods; i.e., we evaluated the number of true 

positives. All the methods were executed to provide 3 clusters 

only. The true positive number and its corresponding 

percentage achieved by different methods are depicted in 

Table 4.  

 
Table 4: Correctly clustered Hondo, RYU and CHB samples (true positive) 

using various clustering methods on BBJ and HapMap data.  

Methods Hondo 
(6891 samples) 

RYU 
(151 samples) 

CHB 
(45 samples) 

K-means 5460 (79.2%) 93 (61.4%) 29 (65.0%) 
SLink 6889 (99.9%) 2 (1.3%) 0 (0.0%) 
CLink 6875 (99.8%) 2 (1.3%) 0 (0.0%) 
ALink 6889 (99.9%) 2 (1.3%) 0 (0.0%) 
WLink 6881 (99.9%) 2 (1.3%) 0 (0.0%) 
MLink 6881 (99.9%) 2 (1.3%) 0 (0.0%) 

 
1 Here we did not employ European and African SNPs as they are 

quite well separated on leading two PCA components which will 

make clustering problem very easy. This analysis has shown on 

European SNPs by Novembre et al. [44].  

HML 6655 (96.6%) 144 (95.4%) 45 (100.0%) 

 

 

It can be observed from Table 4 that most of the methods 

achieve high true positives for the Hondo cluster, however, 

many fail to obtain similar performance for the RYU and CHB 

clusters. One reason could be the imbalanced size of the 

subgroups. It can be noted that 6891 out of 7087 samples 

belong to the Hondo cluster; i.e., almost 97% of samples 

belong to the Hondo cluster leaving only 3% to the RYU and 

CHB clusters. This imbalance creates problems for many 

methods and consequently the majority of samples 

accumulated in one cluster and the methods failed to track 

other clusters objectively. Therefore, even the data appears to 

be separable (as in Fig. 8b), the detection of the RYU and 

CHB clusters are difficult due to the limited number of 

samples. Furthermore, in this imbalanced situation, the overall 

accuracy measure is not very meaningful (since all the 

samples grouped in only one cluster, i.e., the Hondo cluster, 

would show high overall clustering accuracy) and therefore 

we reported true positives for all the clusters. From the results, 

HML shows better detection for the RYU and CHB clusters. 

For CHB, the HML method clustered all the samples 

correctly. 

 In the previous analysis, we provided the number of cluster 

information to all the methods and obtained results. In the 

subsequent analysis, we do not provide this information and 

study the characteristics of the HML method. For this, we 

perform clustering on 5-dimensional BBJ and HapMap data 

and plot the transformed 5-dimensional data on 3-dimensional 

plane using the linear discriminant analysis (LDA) method 

[12], [54], [55], [56]. It can be observed from the 𝐿𝑡𝑜𝑡 plot 

(Fig. 8a) that after 𝑙𝑒𝑣𝑒𝑙 = 3 the 𝐿𝑡𝑜𝑡 curve does not change 

significantly. However, at 𝑙𝑒𝑣𝑒𝑙 = 7 it reaches its peak value. 

Therefore, one interpretation could be to consider 3 clusters as 

this would give the most significant partition of the data. This 

would provide the same results as obtained in Table 4. 

However, if some finer clusters (clusters with fewer samples) 

are required then maximum value of 𝐿𝑡𝑜𝑡 can be considered 

which would give 7 clusters. In Fig. 8b, we illustrated partition 

of data using 7 clusters. However, as mentioned, 3 clusters are 

dominant. The leftmost cluster (Cluster 1 in the figure) 

encompasses of Chinese samples, the center cluster (Cluster 2) 

is mostly Hondo samples and the rightmost cluster (Cluster 3) 

includes RYU samples. There are 6662 samples in Cluster 2 

(Hondo). All CHB is clustered in Cluster 1 giving false 

negative (FN) error 0 (0.0%). Around 7 RYU samples are 

misclassified as the Hondo cluster, giving FN = 7 (4.6%). 

There are four other clusters as well (containing very few 

samples) which are not labelled in Fig. 8b. These are basically 

outliers representing noise. Thus after clustering, outliers can 

be removed and further analysis can be conducted on a 

particular region of interest. Therefore, HML can be applied to 

clustering problems to provide reasonable information about 

the cluster location and cluster numbers.  

 

https://www.cog-genomics.org/plink2
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VII. CONCLUSION 

In this study, we proposed a hierarchical maximum likelihood 

(HML) method by considering the topologies of genomic data. 

It was shown that the HML method can perform clustering 

when the clusters appeared in an overlapping form. This 

method was also useful when the number of samples is lower 

than the data dimensionality. HML is free from initial 

parameter settings, and, it does not require computation of first 

and second derivative of likelihood functions as required by 

many other maximum likelihood based methods. The HML 

method was tested both on artificial and real data and was able 

to deliver promising results over many existing clustering 

techniques. It was also illustrated that HML can estimate the 

number of clusters reasonably well. A Matlab package of our 

HML method is available from our webpage.  

 

 

   
             (a) 

 
            (b) 

Figure 8: a) 𝐿𝑡𝑜𝑡 versus levels plot; b) Clustering by HML on 5-dimensional 
BBJ and HapMap data. 

 

ACKNOWLEDGMENT 

We thank the Editor and anonymous reviewers for 

providing constructive comments which greatly enhanced the 

presentation quality of the paper. 

 

 

REFERENCES 

[1] J. Adachi, M. Hasegawa, MOLPHY version 2.3: programs for 
molecular phylogenetics based on maximum likelihood, 1996. 

[2] A. Ben-Hur et al., Support vector clustering, J. Machine Learning 
Research, vol. 2, pp. 125-137, 2001. 

[3] E. Berndt et al., Estimation and Inference in Nonlinear Structural 
Models, Annals of Economic and Social Measurement, vol. 3, pp. 
653–665, 1974. 

[4] R. Castro, M. Coates, R. Nowak, Likelihood based hierarchical 
clustering, IEEE Trans. Signal Process,  vol. 42,  pp. 2308 -2321, 
2004. 

[5] C. Chen et al., Bayesian clustering algorithms ascertaining spatial 
population structure: a new computer program and a comparison 
study, Molecular Ecology Notes, vol. 7, pp. 747–756, 2007.  

[6] J.-H. Chiang, P.-Y. Hao, A new kernel-based fuzzy clustering 
approach: support vector clustering with cell growing, Fuzzy 
Systems, IEEE Transactions on Fuzzy Systems, vol. 11, issue 4, pp. 
518 - 527, 2003. 

[7] W.C. Davidon, Variable metric method for minimization, AEC 
Research and Development Report ANL-5990 Rev. (1959). 

[8] D. Defays, An efficient algorithm for a complete link method, The 
Computer Journal (British Computer Society), vol. 20, no. 4, pp. 
364–366, 1977. 

[9] A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from 
incomplete data via the EM algorithm, Journal of the Royal 
Statistical Society Series B, vol. 39, no. 1, pp. 1-38, 1977. 

[10] T. Denoeux,  Maximum Likelihood Estimation from Uncertain Data 
in the Belief Function Framework,  IEEE Transactions on  
Knowledge and Data Engineering, vol. 25 ,  issue 1, pp. 119-130, 
2013. 

[11] I.S. Dhillon, Y. Guan, J. Kogan, Iterative clustering of high 
dimensional text data augmented by local search, In Proceedings 
of The 2002 IEEE International Conference on Data Mining, 2002. 

[12] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification. Wiley, 
2000. 

[13] E. Elhamifar, R. Vidal, Sparse subspace clustering: Algorithms, 
theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 
Vol. 35, pp. 2765–2781, 2013. 

[14] B.S. Everitt et al., Cluster Analysis, John Wiley & Sons, 5th edition, 
2011. 

[15] S. Farrell, C. Ludwig, Bayesian and maximum likelihood estimation 
of hierarchical response time models, Psychon Bull Rev., vol. 15, 
no. 6, pp. 1209–1217, 2008. 

[16] U.M. Fayyad, C.A. Reina, P.S. Bradley, Initialization of Iterative 
Refinement Clustering Algorithms, Proceedings of the 4th 
International Conference on Knowledge Discovery & Data Mining 
(KDD98), R. Agrawal, P. Stolorz and G. Piatetsky-Shapiro (eds.), pp. 
194-198, 1998.  

[17] J. Felsenstein, G.A. Chruchill, A hidden Markov model approach to 
variation among sites in rate of evolution, Mol. Biol. Evol., vol. 13, 
no. 1., pp. 93-104, 1996. 

[18] D. Fisher, Iterative optimization and simplification of hierarchical 
clustering, Journal of Artificial Intelligence Research, vol. 4, pp. 
147-179, 1996. 

[19] F. Fletcher, M.J.D. Powell, A rapidly convergent descent method 
for minimization, Comput. J. vol. 6, pp. 317–322, 1963. 

[20] J. Goldberger, S. Roweis, Hierarchical clustering of a mixture 
model, NIPS, pp. 505-512, 2005. 

[21] T.R. Golub et al., Molecular Classification of Cancer: Class 
Discovery and Class Prediction by Gene Expression Monitoring, 
Science, vol. 286, pp. 531-537, 1999. 

[22] T. Hastie, R. Tibshirani, Friedman, J, The Elements of Statistical 
Learning 2nd ed., New York, Springer, ISBN 0-387-84857-6, 2009. 

http://elsa.berkeley.edu/~bhhall/papers/BerndtHallHallHausman74.pdf
http://elsa.berkeley.edu/~bhhall/papers/BerndtHallHallHausman74.pdf
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=91
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=91
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Denoeux,%20T..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=69
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6355920
http://en.wikipedia.org/wiki/Trevor_Hastie
http://en.wikipedia.org/wiki/Robert_Tibshirani
http://www-stat.stanford.edu/~tibs/ElemStatLearn/
http://www-stat.stanford.edu/~tibs/ElemStatLearn/
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-387-84857-6


0018-9294 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2016.2542212, IEEE
Transactions on Biomedical Engineering

> TBME-01461-2015< 

 

11 

[23] K.A. Heller, Z. Ghahramani, Bayesian hierarchical clustering, 
Twenty-second International Conference on Machine Learning, 
ICML 2005. 

[24] S.-J.,Horng et al., A novel intrusion detection system based on 
hierarchical clustering and support vector machines, Expert 
Systems with Applications, vol. 38, issue 1, pp. 306-313, 2011. 

[25] A.K. Jain, Data clustering: 50 years beyond K-means, Pattern 
Recognition Letters, vol. 31, issue 8, pp. 651-666, 2010. 

[26] A.K. Jain, M.N. Murty, Data clustering: a review, ACM Computing 
Surveys, vol. 31, no. 3, pp. 264-323, 1999. 

[27] R.I. Jennrich, P.F. Sampson, Newton-Raphson and related 
algorithms for maximum likelihood variance component 
estimation, Technometrics, vol. 18, issue 1, pp. 11-17, 1976. 

[28] S. Jun, S.-S. Park, D.-S. Jang, Document clustering method using 
dimension reduction and support vector clustering to overcome 
sparseness, Expert Systems with Applications, vol. 41, issue 7, pp. 
3204-3212, 2014. 

[29] L. Kaufman, P.J. Rousseeuw, Finding groups in data: an 
introduction to cluster analysis, John Wiley & Sons, Inc, 2005. 

[30] H.-P. Kriegel, P. Kröger, A. Zimek, Clustering high-dimensional 
data: a survey on subspace clustering, pattern-based clustering, 
and correlation clustering, ACM Transactions on Knowledge 
Discovery from Data, vol.  3, no. 1, pp. 1-58, 2009. 

[31] E.K. Latch et al., Relative performance of Bayesian clustering 
software for inferring population substructure and individual 
assignment at low levels of population differentiation, 
Conservation Genetics, vol. 7, issue 2, pp. 295-302, 2006. 

[32] J. Lee, D. Lee, An improved cluster labeling method for support 
vector clustering, IEEE Transactions on Pattern Analysis and 
Machine Intelligence, vol. 27, no. 3, pp. 1-4, 2005. 

[33] J. Lee, D. Lee, Dynamic characterization of cluster structures for 
robust and inductive support vector clustering, IEEE Transactions 
on Pattern Analysis and Machine Intelligence, vol. 28, no. 11, pp. 
1869-1874, 2006. 

[34] P. Legendre, L. Legendre, Numerical Ecology, 2nd Edition, 
Developments in Environmental Modelling 20, Elsevier, 
Amsterdam, 1998. 

[35] J.S. Liu et al., Bayesian clustering with variable and transformation 
selections, Bayesian Statistics, vol. 7, pp. 249–275, 2003. 

[36] E.F. Lock, D.B. Dunson, Bayesian consensus clustering, 
Bioinformatics, doi: 10.1093/bioinformatics/btt425, 2013. 

[37] S. Long, Regression Models for Categorical and Limited 
Dependent Variables, London: Sage Publications, 1997. 

[38] G. McLachlan, D. Peel. Finite Mixture Models. Hoboken, NJ: John 
Wiley & Sons, Inc., 2000 

[39] L. McQuitty, Similarity analysis by reciprocal pairs for discrete and 
continuous data, Educational and Psychological Measurement, 
vol. 26, pp. 825-831, 1967. 

[40] B. Mirkin, Clustering for Data Mining: A Data Recovery Approach, 
Chapman and Hall, Boca Raton, Fla., 2005. 

[41] I. Misztal, Comparison of computing properties of derivative and 
derivative-free algorithms in variance-component estimation by 
REML, Journal of Animal Breeding and Genetics, vol. 111, issue 1-
6, pp. 346-355, 1994. 

[42] S. Mo et al., Pattern discovery and cancer gene identification in 
integrated cancer genomic data, PNAS, vol. 110, no. 11, pp. 4245-
4250, 2013. 

[43] S. Monti et al., Consensus clustering: a resampling-based method 
for class discovery and visualization of gene microarray data, 
Machine Learning, vol. 53, pp. 91-118, 2003. 

[44] J. Novembre et al., Genes mirror geography within Europe, 
Nature, pp. 98-101, 2008. 

[45] J.C. Pinheiro, D.M. Bates, Mixed-effects models in S and S-Plus, 
New York, NY, Springer, 2000. 

[46] J. Podani, Multivariate data analysis in ecology and systematics, 
Ecological Computations Series (ECS): vol. 6, 1994. 

[47] M.M. Rahman, D.N. Davis, Fuzzy Unordered Rules Induction 
Algorithm Used as Missing Value Imputation Methods for K-Mean 
Clustering on Real Cardiovascular Data, Proceedings of the World 
Congress on Engineering (WCE), vol I, 2012. 

[48] M. Ramoni, P.  Sebastiani, P.  Cohen, Bayesian Clustering by 
Dynamics, Machine Learning, vol. 47, issue 1, pp. 91-121, 2002. 

[49] S.W. Raudenbush, A.S. Bryk, Hierarchical linear models: 
Applications and data analysis methods. 2nd ed.. Thousand Oaks, 
CA, Sage, 2002. 

[50] A. Sharma, K.K. Paliwal, Fast principal component analysis using 
fixed-point algorithm, Pattern Recognition Letters, vol. 28, issue 
10, pp. 1151-1155, 2007. 

[51] A. Sharma, S. Imoto, S. Miyano, A top-r feature selection 
algorithm for microarray gene expression data, IEEE/ACM 
Transactions on Computational Biology and Bioinformatics, vol. 9, 
no. 3, pp. 754-764, 2012. 

[52] A. Sharma, K.K. Paliwal, A gradient linear discriminant analysis for 
small sample sized problem, Neural Processing Letters, vol. 27, no. 
1, pp. 17-24, 2008a. 

[53] A. Sharma, K.K. Paliwal, Cancer classification by gradient LDA 
technique using microarray gene expression data, Data & 
Knowledge Engineering, vol. 66, issue 2, pp. 338-347, 2008b. 

[54] A. Sharma, K.K. Paliwal, G.C. Onwubolu, Class-dependent PCA, 
MDC and LDA: A combined classifier for pattern classification, 
Pattern Recognition, vol. 39, no. 7, 1215-1229, 2006. 

[55] A. Sharma, K.K. Paliwal, Rotational linear discriminant analysis 
technique for dimensionality reduction, IEEE Transactions on 
Knowledge and Data Engineering, vol. 20, no. 10, pp. 1336-1347, 
2008c. 

[56] A. Sharma, K.K. Paliwal, A new perspective to null linear 
discriminant analysis method and its fast implementation using 
random matrix multiplication with scatter matrices, Pattern 
Recognition vol., 45, no. 6, pp. 2205-2213, 2012. 

[57] R. Sibson, SLINK: an optimally efficient algorithm for the single-
link cluster method, The Computer Journal (British Computer 
Society), vol. 16, no. 1, pp. 30–34, 1973. 

[58] D. Singh et al., Gene Expression Correlates of Clinical Prostate 
Cancer Behavior, Cancer Cell, vol. 1, pp. 203-209, 2002. 

[59] R. Sokal, C. Michener, A statistical method for evaluating 
systematic relationships, University of Kansas Science Bulletin, 
vol. 38, pp. 1409–1438, 1958. 

[60] Y. Yamaguchi-Kabat et al., Japanese population structure, based 
on SNP genotypes from 7003 individuals compared to other 
ethnic groups: effect on population-based association studies, The 
American Journal of Human Genetics, vol. 83, pp. 445-456, 2008. 

[61] K. Wang et al., Prediction of piRNAs using transposon interaction 
and a support vector machine, BMC Bioinformatics, 15:419, 2014. 

[62] M.D. Wilkerson, D.N. Hayes, ConsensusClusterPlus: a class 
discovery tool with confidence assessments and item tracking, 
Bioinformatics, vol. 26, no. 12, pp. 1572-1573, 2010. 

[63] S. Vaithyanathan, B. Dom, Model-Based Hierarchical Clustering, In 
Proc. 16th Conf. Uncertainty in Artificial Intelligence, pp. 599-608, 
2000. 

[64] X. Zheng et al., A High-performance Computing Toolset for 
Relatedness and Principal Component Analysis of SNP Data, 
Bioinformatics, vol. 28, no. 24, pp. 3326-3328, 2012. 

 

 

http://www.sciencedirect.com/science/article/pii/S0957417410005701
http://link.springer.com/journal/10592
http://link.springer.com/journal/10592/7/2/page/1
http://link.springer.com/search?facet-creator=%22Stefano+Monti%22
http://link.springer.com/search?facet-creator=%22Marco+Ramoni%22
http://link.springer.com/search?facet-creator=%22Paola+Sebastiani%22
http://link.springer.com/search?facet-creator=%22Paul+Cohen%22
http://link.springer.com/journal/10994
http://link.springer.com/journal/10994/47/1/page/1
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=RVEFII8AAAAJ&citation_for_view=RVEFII8AAAAJ:9yKSN-GCB0IC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=RVEFII8AAAAJ&citation_for_view=RVEFII8AAAAJ:9yKSN-GCB0IC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=RVEFII8AAAAJ&citation_for_view=RVEFII8AAAAJ:UeHWp8X0CEIC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=RVEFII8AAAAJ&citation_for_view=RVEFII8AAAAJ:UeHWp8X0CEIC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=RVEFII8AAAAJ&citation_for_view=RVEFII8AAAAJ:roLk4NBRz8UC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=RVEFII8AAAAJ&citation_for_view=RVEFII8AAAAJ:roLk4NBRz8UC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=RVEFII8AAAAJ&citation_for_view=RVEFII8AAAAJ:roLk4NBRz8UC

