
 

 

  
Abstract—In this paper, we propose a solution to the motion 

control problem of a 2-link revolute manipulator arm. We require the 
end-effector of the arm to move safely to its designated target in a 
priori known workspace cluttered with fixed circular obstacles of 
arbitrary position and sizes. Firstly a unique velocity algorithm is 
used to move the end-effector to its target. Secondly, for obstacle 
avoidance a turning angle is designed, which when incorporated into 
the control laws ensures that the entire robot arm avoids any number 
of fixed obstacles along its path enroute the target. The control laws 
proposed in this paper also ensure that the equilibrium point of the 
system is asymptotically stable. Computer simulations of the 
proposed technique are presented. 
 

Keywords—2-link revolute manipulator, motion control, obstacle 
avoidance, asymptotic stability.  

I. INTRODUCTION 
robot manipulator is a mechanism made up of rigid links 
connected by different joints [1]. The two basic types of 

joints commonly found in literature are rotational (revolute) or 
translational (prismatic). A revolute joint is like a hinge that 
allows relative rotation between two links whereas a prismatic 
joint provides a linear sliding movement between two links 
[2]. 

The pioneering work in the field of path planning of a robot 
arm was done by Meyer [3] in 1993 where the author 
proposed a findpath scheme based on the velocities of the 
various components of the planar revolute arm. Vanualailai 
et.al [2] in 1998 used the Lagrange method to derive a set of 
differential equations governing planar robot system and then 
proposed a solution for the motion control of two robot arms 
using the Lyapunov-based control scheme. Sacks [4] in 2003 
studied path planning for planar articulated robots using 
configuration spaces and compliant motion. Vanulailai et.al 
[5], [6] in 2004 and 2007 used Lyapunov-based control 
scheme to solve the findpath problem of 2-link and 3-link 
revolute manipulator arms. Sharma et.al [7] in 2011 used 
neural networks to move a planar robot arm in the presence of 
fixed and artificial obstacles. 

Other work in this area involve that of Martinez et al. in [8] 
via Kohonen networks; Josin et al. [9] using inverse 
kinematics and neural networks; Guez et al. [10] using neural 
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networks and Lee et al. [11] who studied a 3 degree of 
freedom manipulator. A major problem faced in [10] and [11] 
was the incorporation of the system singularities into the 
proposed solution. 

In this paper, we provide a relatively simple approach to 
solve the motion control of a 2-link revolute robot arm which 
is made up of two rotational joints. We first derive the 
kinematic model of the robot arm and then model its motion 
from an initial state to the target in the presence of fixed 
obstacles. The mechanical singularities associated with the 
system are treated as artificial obstacles and are avoided using 
the obstacle avoidance scheme. Our main aim is to design a 
set of continuous control laws that ensure asymptotic stability 
of the system. A unique and scalable algorithm for target 
convergence and obstacle avoidance is proposed that works 
for any number fixed obstacles of various sizes. 

The rest of the paper is organized as follows: In Section II, 
we derive the kinematic model of the revolute arm. The 
motion planning and control of the planar robot arm in the 
absence of obstacles is considered in Section III. In Section 
IV, we propose an obstacle avoidance technique to control the 
motion of the robot arm in a workspace cluttered with fixed 
circular obstacles. Computer simulation of the generated path 
with the proposed technique is also presented. The stability of 
the system is studied in Section V. Finally, in Section VI 
concluding remarks on the contributions and future work are 
made. 

II.    MODELLING THE REVOLUTE ARM 
We have considered a simple 2-link revolute manipulator 

arm that has two rotational joints in the 1 2z z - plane as shown 
in the Fig. 1. The arm consists of two rigid links which are 
connect via revolute joints; the first link can rotate through 
360 °  and the second link which carries the payload at the 
gripper can rotate through 180 °   with respect to the first link. 

With the help of Fig. 1, we assume that: 
i. the 2-link revolute manipulator arm is anchored at the 

origin; 
ii. link 1 has a length of 1l  and has an angular position 

1( )tθ , measured counterclockwise from the 1z -axis at 
time t;  

iii. link 2 has a length of 2l  and has an angular position 

2 ( )tθ , measured counterclockwise from link 1 at time 
t; 

iv. the coordinate of the end-effector is ( , )x y . 
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Fig. 1 Schematic representation of a 2-link revolute manipulator 

arm 
 
Remark: We can express the position of the end-effector 
completely in terms of the state variables, 1( )tθ and 2 ( )tθ  as 
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We first look at the motion of the end-effector of the robot 

arm. Let a velocity of v be applied to the end-effector. Then 
the kinematic equations of the end-effector can be expressed 
as 
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where 1u  and 2u  are the 1z  and 2z  components, respectively, 
of v. We now look for the kinematic model of this 2-link 
manipulator arm. Let 2 2d x y= +  be the distance from the 
origin to the end-effector, then using the cosine rule, we see 
that 
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Differentiate this with respect to t and simplify, we see that 
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Next, we look at the kinematic equation relating to 2 ( )tθ .  

Let  ϑ  be the angular position of the end-effector relative to 
the origin, then 

 

tan y
x

ϑ =  

from which we get 
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Using the cosine rule again, we see that 
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Differentiate this with respect to t and simplify, we get 
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Thus the kinematic equations for the revolute manipulator 

arm is 
 

( ) ( )( )
( )

( )

( )

( )

2 1
1

1 2 1 1

1 1

1 1 2 1 2
2 1

1 2 2

1 1 2 1 2
2

1 2 2

1

2 2 2 2
1 1 2

2 2
1

2
1 1 2

2

cos sin

cos sin cos
sin

cos cos
sin

sin sin
sin

(0) atan2 (0), (0)

(0) (0)
cos

2 (0) (0)

(0) cos

u u
d

u u d
d

u

u

y x

x y

x y

ϑ ϑ
θ

ϑ ϑ θ ϑ
θ ϑ

θ θ θ
θ

θ
θ θ θ

θ
θ

θ

−

−

−
=

+ − −
+

−

− +
=

− +
+

=

⎡ ⎤+ + −
⎢ ⎥+
⎢ ⎥+⎣ ⎦

+
=

&

l

l

l l&
l l

l l

l l

l l

l

l l2 2 2

1 2

(0) (0)
2
x y

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎡ ⎤− −
⎪⎢ ⎥

⎣ ⎦ ⎪⎭
l l

       (1) 

 
system (1) is a description of the instantaneous angular 
velocities of the revolute manipulator arm. Here 1u  and 2u  are 
classified as the controllers. We shall use the vector notation 

( )1 2( ) ( ), ( )t t tθ θ=x  to refer to the angular position of the 
robot in the 1 2z z -plane. 

III. MOTION CONTROL IN THE ABSENCE OF OBSTACLES 
In our motion control problem, we want the end-effector of 

the robot arm to start from an initial position, move towards 
its target and converge to the center of the target. The target, 
T, considered in this paper is a disk of center ( )1 2,p p  and 
radius Tr  which is described as: 
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{ }2 2 2 2
1 2 1 1 2 2( , ) : ( ) +( ) .TT z z z p z p r= ∈ − − ≤R  

A. Target Convergence  
For the end-effector of the robot arm to move from its 

initial position to the target position, we adopt the following 
form of velocity algorithm from [7] which is depended on the 
initial and final positions of the robot: 
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where 0| |v  is the initial velocity of the end-effector at 0t = . 
The function v is defined, continuous and positive over the 
domain 
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then we see that  ex  is an equilibrium point of system (1). 
 For ( ) et ≠x x , we further define ( )tξ  as the angular 
position of the target center relative to the end-effector at time 
t. The angle ( )tξ  is defined implicitly 
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B.   Mechanical Singularities  
In reality, the motion of the end-effector is restricted in the 

sense that the second link of the revolute 2-link manipulator 
can neither be fully stretched nor it can be folded back [5]. 
That is the angle 2θ  is restricted as 

 
20 θ π≤ ≤  
 

In order to observe this restriction, we treat the line passing 
through the points (0,0) and ( )1 1 1 1cos , sinθ θl l  as an 
artificial obstacle for the end-effector. The end-effector can 
avoid this line by simply avoiding the closest point on the line 
[12]. The closest point on the line measured form the position 
of the end-effector is given by ( )1 1 1 1cos , sinλ θ λ θ∗ ∗l l   where 

 
2 2
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l
 

This closest point on the line is treated as an artificial 
obstacle and thus it will simply be avoided by carefully 
defining the controllers. 
 The distance from the end-effector to the closest point on 
the line is given by 0 2 2sinR θ= l . Let max 0d >  be a pre-
determined scalar and define 
 

( )
( )

0 1 1 2 1 2 2

1 1 2 1 2 1

cos cos

sin sin

f p

p

θ θ θ

θ θ θ

= − +⎡ ⎤⎣ ⎦
− − +⎡ ⎤⎣ ⎦

l l

l l
 

                0 max
0

max 0 0 max

0,           if  
if  

R d
d R R d

α
≥⎧

= ⎨ − <⎩
    

0
0

0

1,  if  0
1 if  0

f
f

β
≤⎧

= ⎨− >⎩
 

1 0 0
0

0

tan
R

α β
ε − ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

 
For the avoidance of the line obstacle, we propose the 

following form of the controllers 1u  and 2u : 
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Remark: With the form of controllers given in (2), we see 
that as the end-effector comes closer to the line obstacle, then 
the quantity 0R  will decrease. This will increase 0ε  since 0R  

appears in the denominator. Hence an increase in 0ε  will 
force the end-effector to move away from the obstacle. 
           
Substituting for v and ξ  into (2), we obtain 
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The controllers are bounded and continuous at every point 

over the domain  
 

{ }2
1 2 0: ( (0),  (0) ( ,  ) 0 .D x y p p R= ∈ ≠ ∩ >x R  

 
Simulation 1: The computer is used to numerically integrate 
system (1) to obtain the solution ( ( ), ( ))r t tθ  and plot the 
trajectory of the end-effector, which converges to the target 
position 1 2( , )p p   and stays there as t → +∞ . For our 
simulation, Table I gives the values of the different 
parameters, and Fig. 2 gives the trajectory of the arm. It was 
noticed that due to the unique forms of the controllers, the arm 
slowed down as the end-effector approached its target. 
 

World Academy of Science, Engineering and Technology 72 2012

1238



 

 

TABLE I 
VALUES OF DIFFERENT PARAMETERS USED IN THE SIMULATION 

Initial Configuration 
Initial position (6,7) m 
Initial velocity  1 m/s 

Final Configuration 
Target position (8,-6) m 
Radius of the target 0.2 m 

Other Parameters 
Workspace dimensions 10 10z≤ ≤ , 20 10z≤ ≤  
Robot dimensions 1 6=l m, 2 6=l m 
Sensing region max 1d = m 

 

 
Fig. 2 The motion of the arm from an initial configuration to a 

final configuration as determined by the controllers in (3) 

IV. MOTION CONTROL IN THE PRESENCE OF OBSTACLES 
Let us fix 0q >  obstacle within the boundaries of the 

workspace. We assume that the lth obstacle is circular with 
center given as ( )1 2,l lo o and radius lr . The lth stationary 
obstacle is defined below. 
Definition 1: The lth stationary obstacle is a disk-shaped 
obstacle with center ( )1 2,l lo o and radius lr . Precisely, the lth 
stationary obstacle is the set  
 

{ }2 2 2 2
1 2 1 1 2 2( ,  ) : ( ) ( )l l l lFO z z z o z o ro= ∈ − + − ≤R  

 
for l = 1,2,…,q. 
Assumption 1: The lth obstacle must be placed the robot’s 
workspace in such a way that its center ( )1 2,l lo o  must satisfy 

the inequality ( )22 2
1 2 1l l lo o ro+ > +l . 

Remark: Assumption 1 is justified since link 1 needs to move 
freely in the circular region  

{ }2 2 2 2
1 2 1 2 1( , ) :C z z z z= ∈ + ≤R l  

 
 This also ensures that link 1 is not trapped in between two 

obstacles. 
Thus for the end-effector to converge to its target safely, we 

need the entire link 2 to avoid a fixed obstacle. For this, we 
utilize the minimum distance technique (MDT) proposed by 
Sharma in [12], where the author calculated the minimum 
distance from a robot to a line segment and the resultant 
closest point was avoided by the robot. However, in our case, 
we want the line segment (link 2) to avoid a fixed obstacle. 

Adopting the concept from [12], we find the point on link 2 
that will be closest to a fixed obstacle. Let * *( , )l lx y  be a point 
on link 2 that is closest to the lth fixed obstacle, then it can be 
shown that 
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Note that [0, 1]lλ ∈ . If 1lλ > , then we let 1lλ =  and if  

0lλ < , then we let 0lλ = . Otherwise we accept the value of 

lλ  between 0 and 1. 

 Now, let * 2 * 2
1 2= ( ) ( )  l l l l l lR x o y o ro− + − − be the distance 

from the center of the lth obstacle to the point * *( , )l lx y  and 
define 
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for  l = 1,2,…,q. In order for the point * *( , )l lx y   to avoid the 
fixed obstacles and for the end-effector to avoid the artificial 
obstacle, we modify the controllers 1u  and 2u  given in (2) as:  
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Substituting for v and ξ  into (4), we obtain 
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The controllers are bounded and continuous at every point 

over the domain  
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Simulation 2: To illustrate the effectiveness of our proposed 
controller, we have generated the trajectories of the revolute 
arm from some initial configuration to the final configuration. 
This is shown in Example 1 and Example 2 below. 

Example 1: The robot arm encounters a fixed obstacle which 
it has to avoid along its journey to the target. The values of the 
different parameters used in the simulation (if different from 
Simulation 1) are given in Table II. 
 

TABLE II 
VALUES OF DIFFERENT PARAMETERS USED IN THE SIMULATION. 

Initial Configuration 
Initial position (8,-5) m 
Initial velocity  1 m/s 

Final Configuration 
Target position (5,8) m 
Radius of the target 0.2 m 

Obstacle Parameters 
Obstacle center (6,4) m 
Obstacle radius 0.8 m 

 
Fig. 3 shows the trajectory of the robot arm from the initial 

to the final states. Note that, given appropriate initial 
conditions, the robot arm avoided the obstacle and the end-
effector converged to its designated target. 
 

 
Fig. 3 Trajectory of the end-effector of the robot arm with initial 

position (8,−5) and the target placed at (5, 8) 
 
Example 2: Here, we illustrate the effectiveness of the control 
laws among several fixed obstacles. The initial and final 
position of the end-effector is shown in Fig. 4 while the 
positions and sizes of the fixed obstacles were generated 
randomly. 

Fig. 4 shows the convergence of the end-effector to its 
designated target in the presence of multiple obstacle in the 
workspace. The robot arm converges nicely to the target 
whilst avoiding the obstacles along its path. 

 

 
Fig. 4 Trajectory of the end-effector of the robot arm with initial 

position (−7, 8) and the target placed at (8, 7) 
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V.  STABILITY ANALYSIS 
The controllers 1u  and 2u  defined by (5) are bounded and 

continuous at every point on the neighborhood of the 
equilibrium point, and lie in neighborhood of the equilibrium 
point for all 0t ≥ . Given this, the discussions above yield the 
stability of system (1): 

Theorem 1: If the initial position ( (0), (0))x y   of the end-
effector does not intersect with the target position and the 
Assumption 1 holds, then the point ex  is an asymptotic stable 
equilibrium point of system (1). 
 
Proof. Consider the Lyapunov function  
 

2
1 2

1( ) ( , )
2

L p x p y= − −x  

 
which is defined, continuous and positive over the domain 
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It is clear that ( )L x  has continuous first partial derivatives 

in the neighborhood  D of the equilibrium point ex  of system 
(1). Moreover, in the region D, we see that ( ) 0eL =x   and 

( ) 0L >x for all e≠x x . Now, the time-derivative of ( )L x  
along a trajectory of system (1) is given by 

 
1 2
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( , )
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=

− −
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⎛ ⎞
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∑
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again, it is clear that in the region D,  ( ) 0eL =x&  and ( ) 0L <x&  
for all e≠x x . Hence it can be concluded that the point ex  is 
an asymptotic stable equilibrium point of system (1). 

VI. CONCLUSION 
The paper presents a simple approach for solving the 

motion control of a 2-link revolute manipulator. A tailored 
target convergence and obstacle avoidance scheme is 
developed and the control laws are designed to move the end-
effector towards its goal and avoid any fixed obstacles along 
its path. 

The control laws proposed in this paper also ensure an 
asymptotic stability of the system. This has been proven using 
the Direct Method of Lyapunov. The stabilization property of 
the system has aslo been verified numerically via the 
computer simulations. 

Future work will consider the motion control of 3-
dimensional manipulator arms, mobile car-like robots and 
mobile manipulator arms. 
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