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Abstract—Problem decomposition determines how subcompo-
nents are created that have a vital role in the performance
of cooperative coevolution. Cooperative coevolution naturally
appeals to fully separable problems that have low interaction
amongst subcomponents. The interaction amongst subcompo-
nents is defined by the degree of separability. Typically, in
cooperative coevolution, each subcomponent is implemented as
a sub-population that is evolved in a round-robin fashion for a
specified depth of evolution. This paper examines the relationship
between the depth of evolution and degree of separability for
different types of global optimisation problems. The results show
that the depth of evolution is an important attribute that affects
the performance of cooperative coevolution and can be used to
ascertain the nature of the problem in terms of the degree of
separability.

I. INTRODUCTION

Despite their successful applications [1, 2], the performance
of evolutionary algorithms (EA’s) depreciates with an increase
in the number of dimensions [3, 4]. This is also known as
the “curse of dimensionality”[3]. The reasons appear to be
two-fold [5]; 1) complexity of the problem tends to increase
with the size of problem, where a previously successful search
strategy may not necessarily be capable of finding the optimal
solution in a different context. 2) the solution space of the
problem increases exponentially with respect to the problem
size. There is a need to have enhanced search strategies to
explore all the promising regions in a given time budget [6,
7, 8, 5].

Cooperative Coevolution (CC) is a biologically inspired
divide and conquer evolutionary algorithm [6] that features
subcomponents and evolves them as sub-populations. The
subcomponents typically consist of a single or a group of inter-
acting variables which evolve together in isolation. Although
CC has been a promising framework for confronting large
dimensional optimisation problems, only a few studies have
reported performance effects of decomposing a high dimen-
sional problem into single or low dimensional subcomponents
[7, 9]. CC has been applied to neuro-evolution for solving a

wide range of time-series [10, 11] and pattern classification
problems [12]. Problem decomposition has been widely been
studied in case of neuro-evolution where decomposition relies
on the network architecture and degree of separability for
different decomposition methods have been experimentally
studied [12].

CC in principle, performs best in problems that can be
broken down and that do not have any inter-dependencies or
interaction within the decision variables [13]. Such functions
are referred to as separable functions that feature independent
decision variables and thus can be easily decomposed. Non-
separable function on the contrary feature inter-dependencies
amongst the decision variables and therefore are harder to
decompose [14]. Most of the research done with CC has
been focusing on decomposing the problem into smaller sub-
components as problem decomposition strategies are depen-
dent on the degree of separability of the problem [15, 9] .

There has been a lot of work done with regards to problem
decompositions [15, 9], however, not much research has been
done regarding the depth of evolution for different types of
problems. The depth of evolution is basically the number
of generations a sub-population is evolved. Similarly, ob-
servations have not been done on the behavior of problem
separability based on depth of evolution.

This paper experimentally examines the relationship be-
tween the depth of evolution and degree of separability for
different types of global optimisation problems. The aim is
to establish a relationship between depth of evolution and
separability and to find how it affects the performance on
the different types of problems that for instance are fully or
partially separable. This can further help us understand the
relationship of separability and diversity in global optimisation
problems. Hence, the aim can be fulfilled with the following
research questions.

• Does the depth of evolution play an important role for
different types of problems in terms of separability?



• Does the nature of problem change in terms of separa-
bility at different stages of evolution?

• Is the degree of separability the major factor for perfor-
mance of cooperative coevolution?

In answering the research questions, the experiments are
designed to feature basic cooperative coevolution for the
selected benchmark functions. The methodology is motivated
by a study of separability in previous work in case of neuro-
evolution where the variables were perturbed and the change
in gradient of the neural network was observed [12]. In a
fully separable problem, a deep search of evolution will not
create any issues in terms of local convergence as solving a
variable independently means that you are partially solving the
problem.

The rest of this paper is organized as follows. A brief
overview on separability and modality is given in Section
II, and Section III gives details of the methodology. Section
IV presents the experiments followed by the results, and
discussion. Section VI concludes the paper with directions for
future research.

II. BACKGROUND AND RELATED WORK

A. Global Optimization

Optimization is a process that aims to find the maximum or
minimum value out of all possible solutions to a problem.
Global optimisation problems deal with various types of
functions ranging from fully separable, fully non-separable
and partially separable functions [16, 17, 18]. These functions
are grouped into two classes based on modality [19]. Uni-
modal functions are those functions that have only one global
minimum and does not have local minimums. A multi-modal
function basically has one or more local minimums along with
the global minimum. Unimodal functions are easier to opti-
mize because of its lack of local minimums while multi-modal
functions are tougher as there are chances that the search
gets stuck at a local minimum. The optimisation problem gets
more complex as the number of decision variables and their
interactions escalate [20].

B. Cooperative Coevolution

Cooperative Coevolution has demonstrated to be very
promising in solving global optimisation problems [6]. Dif-
ferent variants of cooperative coevolution have been utilized
where the issue of problem decomposition and separability
has been central [7]. The performance of CC algorithms on
high dimensional problems could be significantly enhanced
by incorporating more advanced EAs. Yang and Yao [7],
proposed a cooperative co-evolutionary framework to address
high dimensional non-separable problems. They utilized adap-
tive weighting to permit co-adaptation among subcomponents
while they are interdependent. They also proposed a group
based problem decomposition strategy whereby the grouping
structure could be changed dynamically. Their framework
performed fairly well with large scale problems partaking
interacting variables. Omidvar et. al [15] proposed a co-
operative co-evolutionary differential evolution to discourse

high dimensional problems of up to 1000 dimensions which
showed promising results. Their goal was to advance an earlier
algorithm [21] by employing principal component analysis to
condense the dimensions of a problem [22].

More recently, Chandra et. al presented an adaptive method
known as competitive island based cooperative coevolution
(CICC)[23] where candidate solutions were grouped into
islands that compete and collaborate. The best individual
from the winning islands is injected into the losing island to
ensure fair competition in different phases of evolution for
global optimisation [23]. The same method was earlier used
for training Elman recurrent neural networks for time series
prediction [24] with promising results. Omidvar et. al [25]
presented dependent variables into subcomponents based on
the deferential grouping method and achieved improvements
in the problem decomposition strategies employed.

III. METHODOLOGY: ANALYSIS OF DEPTH OF EVOLUTION
IN COOPERATIVE COEVOLUTION FOR SEPARABILITY

In this section, we define separability and discuss how
cooperative coevolution algorithm can be used to study the
relationship between depth of evolution and separability.

Algorithm 1: Cooperative Coevolution
Stage 1: Initialization:
i. Randomly Generate a set of individuals and assign
them into the sub-populations randomly
ii. Evaluate Species
Stage 2: Evolution:
while Func-Eval ≤ Global-Evolution-Time do

foreach Sub-population do
foreach Depth of n Generations do

Create new individuals using genetic
operators
Cooperative Evaluation the population
Update the sub-populations

end
end

end

The canonical cooperative coevolution algorithm employs a
divide and conquer scheme where the population is divided
into sub-populations of various dimensions. The subcompo-
nents are implemented as sub-populations as shown in Figure
1. The type of problem decomposition determines the number
and size of each of the subcomponents. In the beginning of
evolution, each sub-population contains individuals that have
arbitrary fitness which is evaluated cooperatively. Cooperative
evaluation is done with representative examples where typi-
cally the best individual from each of the sub-populations are
concatenated with the current individual and evaluated using
the fitness function.

Although any evolutionary algorithm can be used in the
sub-populations, we use the generalized generation gap with
parent-centric crossover (G3-PCX) evolutionary algorithm
[26].



A. Depth of Evolution vs Separability

The depth of evolution is defined as the number generations
that each sub-population is evolved in a round robin fashion.
A cycle in cooperative coevolution is complete when all the
sub-populations have been evolved. This is executed until the
number of fitness evaluations or when the minimum error or
fitness is attained.

Definition 1:
A function of n variables is separable if it can be written
as a sum of n functions with just one variable as given in
Equation 1. The parameters of a separable function are called
independent variables [27].

argmin
(x1,x2,..,xn)

f(x1, x2, .., xn) =

(
argmin

x1

f(x1, ..), .. argmin
xn

f(..xn)

)
(1)

The Quadratic function is an example of a separable problem
given by Equation 2.

min
x

f(x) =
n∑

i=1

ix4
i +N (0, 1) (2)

−100 ≤ x ≤ 100, x∗ = (0, 0, .., 0) and f(x∗) = 0

In real world problems, interdependencies exist among deci-
sion variables. Problems that have interdependencies between
decision variables are commonly termed as non-separable. In
[18, 17], the degree of separability have been further divided
into two classes as given in Definition 2. These are m-non-
separable and fully-non-separable.

Definition 2: A non-separable function f(x) is called a m-
non-separable function if at most m of its parameters xi are
not independent. A non-separable function f(x) is called fully-
non-separable function if any two of its parameters xi are not
independent [17, 18] .
An example of a non-separable problem is the extended
Rosenbrock function as given in Equation 3. Examples of
large-scale separable and non-separable functions with up to
1000 dimensions have been provided in [16, 17, 18].

min
x

f(x) =

n−1∑
i=1

[(1− xi
2) + 100(xi+1 − x2

i )] (3)

The extended Rosenbrock function has been shown to have
exactly 1 minimum for n=3 at (1,1,1) and exactly 2 minima
for 4 ≤ n ≤ 7. This result has been obtained by setting the
gradient of the function equal to zero [28].

Due to the existence of variable interactions in non-
separable problems, optimizing each variable independently
may hinder the convergence to a high quality solution.
This highlights the hurdle and challenge to solve fully non-
separable problems. Seemingly, most problems are partially
separable [29, 30], that is they fall between the two extremes
of fully separable and fully non-separable [29, 30, 18].

Fig. 1. Decomposing a large dimension problem into smaller sub components.
Each sub-component represents a species and the combinations of the best
individuals from these species forms the context vector

B. Methodological Design
We used three experimental design strategies to investigate

the research questions.
• The relationship of between the degree of separability

and the depth of evolution is established by observing
the performance of the algorithm by varying the depth of
evolution.

• In order to evaluate if degree of separability changes
during evolution, we evaluate the performance at different
depths of evolution at the selected stages of the optimi-
sation process.

• The effect of the degree of separability is based on obser-
vation of the performance of each problem decomposition
strategy evaluated on different benchmark problems.

IV. EXPERIMENTS AND ANALYSIS

In this section, we present experimental analysis for the
relationship of depth of evolution with degree of separability.
We choose benchmark problems in global optimisation that
have distinct qualities in terms of fitness landscape that reflect
separability and multi-modality. We then present details of
experimental design where different problem decomposition
methods are tested for each problem where the depth of
evolution is evaluated.

There were three classes of functions that we studied; fully
separable unimodal [f1, f2 and f3 ], non-separable multi-modal
[f4, f5 and f8 ] and non-separable uni-modal [f6 and f7 ]. Table
I gives a description of the benchmark problems that have
different fitness landscapes in terms of separability and multi-
modality. The minimum error that defines the termination
criteria is also given. Each problem takes different termination
condition in terms of the number of function evaluations as
given in Table I. The experiments were designed such that
the algorithm terminates when the minimum error is reached
within the maximum time frame for each problem.

We observed the performance of the algorithm on the
different benchmark problems for depth of evolution (DE) that



TABLE I
PROBLEM DEFINITIONS BASED ON [31, 32, 33]

Problem Name Optimum Range Multi-modal Fully-Separable Error Maximum-Time(FE)
f1 Ellipsoid 0 [-5,5] No Yes 1E-20 15000
f2 Shifted Sphere -450 [-100,100] No Yes 1E-10 10000
f3 Schwefel’s Problem 1.2 0 [-5,5] No Yes 1E-20 20000
f4 Rosenbrock 0 [-5,5] Yes No 1E-20 500000
f5 Shifted Rosenbrock 390 [-100,100] Yes No 1E-10 500000
f6 Rastrigin 0 [-5,5] Yes Yes 1E-20 500000
f7 Shifted Rastrigin -330 [-5,5] Yes Yes 1E-10 500000
f8 Shifted Griewank -180 [-600,600] Yes No 1E-10 500000

TABLE II
PROBLEMS DECOMPOSITION STRATEGIES FOR DECOMPOSING 100

DIMENSION PROBLEM

Decomposition Number of Subcomponents Subcomponent Size
PD1 4 25
PD2 25 4
PD3 10 10
PD4 5 20
PD5 20 5

was varied from 1 generation to 100 generations in increments
of 20 generations. The main focus of the investigation was
about finding the relationship between the depth of evolution
and the error in the problems stated above. The algorithm
was analyzed for 100 dimensions with different problem
decomposition methods that are summarized in Table II. Note
that the problems were decomposed by adjacent variables.
All the sub-populations contained 100 individuals. The G3-
PCX evolutionary algorithm was used to evolve the sub-
populations with parameters that included 2 parents and 2
offspring. We use the cooperative coevolution implementation
from the Smart Bilo Computational Intelligence Framework
[34].

We show the performance of each problem decomposition
at the different depth of evolution for two cases in the optimi-
sation process. We show the results in terms of performance
of the algorithm for different problem decomposition methods
at the initial 10% of maximum evolution time and then at
100% convergence. A termination criterion was also when
there were no changes in the minimal change of error for
x function evaluations. We chose x as 100 based on results
from initial runs of the experiments.

V. RESULTS AND DISCUSSION

A. Results

The results are given in the Figure 2(a) to Figure 9(b) where
the error of each function (problem) is affected as DE is varied
at two different stages in the optimisation process. Figure
2(a) to 9(a) show the performance for DE vs error at 10%
convergence while Figure 2(b) to 9(b) show the performance
at 100% convergence.

We observed that the Ellipsoidal function [f1] was fully
converged at approximately 15 000 function evaluations. The

different PD’s and depths of evolution did not make any
difference when we look at the final result after optimisation
given in Figure 2(b). Contrarily, in the initial phases, the depth
and PD played a significant role in affecting the error. The
different PD’s had different function error as seen in Figure
3(a). Similarly, for the depth of evolution, the smaller depth
of evolution had given a larger error that gradually decreased
as the depth of evolution increased.

The Shifted Sphere [f2] and Schwefel’s Problem 1.2 [f3],
Figures 2 and 3, followed a similar pattern as f1. The depth
of evolution had an influence on the different PD’s at 10
% of optimisation time. At 100% optimisation time, the
depth of evolution did not make a large impact on the error,
especially for more than 20 generations. The PD, on the
contrary, was seen to be greatly affecting the error for a smaller
depth of evolution (less than 30 generations) throughout the
optimisation process. For instance, in Figure 4(a) and 4(b),
textitPD4 is chaotic at both 10% and 100% optimisation time
for lower depth of evolution. Note that we refer to 10 % of
optimisation time as the beginning of evolution and 100 % as
the end of evolution in the rest of the discussion.

The Rosenbrock [f4], Shifted Rosenbrock [f5] and Griewank
function [f8] seem to have similar trend as the previous
functions (f1,f2 and f3). The DE at the beginning of evolution
influences the error whereas the lower DE produced a higher
error. In the case of Figure 5 , at the beginning of evolution,
PD2 reduces the error as the DE increases. The Shifted
Rosenbrock function also clearly shows that the PD behaves
differently at different stages of optimisation. Figure 5 shows
that PD2 is performing as the poorest at the beginning,
however, at the end of optimisation, PD4 reported the poorest
performance.

The Rastrigin and Shifted Rastrigin functions (f7 and f7),
showed no affinity towards the varying depth of evolution
throughout the optimisation process. Figure 6 and 7 show
that neither the PD nor the DE affect these functions at the
beginning and similarly at the end.

B. Discussion

In the results, we found that the performance of cooperative
coevolution produced similar trend for different values in the
depth of evolution for fully separable uni-modal functions
and non-separable multi-modal functions. These problems
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Fig. 2. Depth of evolution vs error for Ellipsoid function [f1] at different stages of convergence.
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(a) 10 % convergence
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Fig. 3. Depth of evolution vs error for Shifted Sphere function [f2] at different stages of convergence.
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(a) 10 % convergence
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(b) 100 % convergence

Fig. 4. Depth of evolution vs error for Schwefels Problem 1.2 function [f3] at different stages of convergence.
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Fig. 5. Depth of evolution vs error for Rosenbrock function [f4] at different stages of convergence.
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(b) 100 % convergence

Fig. 6. Depth of evolution vs error for Shifted Rosenbrock function [f5] at different stages of convergence.
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(b) 100 % convergence

Fig. 7. Depth of evolution vs error for Rastrigin function [f6] at different stages of convergence.
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Fig. 8. Depth of evolution vs error for Shifted Rastrigin function [f7] at different stages of convergence.
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Fig. 9. Depth of evolution vs error for Griewank function [f8] at different stages of convergence.



produced a larger error at a smaller depth of evolution in the
initial stages of optimisation. Towards the end of evolution
or optimisation, the depth of evolution did not play any
significant role in the identifying the final error(minimum
function error).

Fully separable and multi-modal functions, on the contrary,
were unaffected by the depth of evolution. The error at all
the depth of evolution investigated was almost the same.
These type of problems had the same behavior throughout the
optimisation process. It was also seen that towards the end
of evolution, the depth does not play a major part for most
problem decomposition strategies in all functions.

The results, in general, show that different problem de-
composition methods have strengths and weakness at different
stages of evolution. In some cases, some problem decomposi-
tion methods perform poorly and then become helpful at the
end of evolution. This implies that the nature of the fitness
landscape in terms of separability changes at different stages
of evolution. Moreover, it is also seen that different problem
decomposition strategies are suitable or have strengths for the
different nature of the problems, for instance, PD2 is best for
the beginning of evolution for Figure 4 but poor in Figure 5.

There is future scope at adapting the depth of evolution -
as the fitness error stagnates when compared to past behavior
of the sub-population, it may be important to either increase
the depth of evolution or reduce it - this is a matter of
investigation. In some cases, the diversity can increase by
the reintroduction of genetic material and the size of the sub-
population can also be increased. Moreover, the behavior of
cooperative coevolution as the size of the problem in terms of
dimension can also give important observations for developing
robust heuristics for improving cooperative coevolution.

VI. CONCLUSION

This paper has investigated effects of subcomponent op-
timisation in cooperative coevolution for different types of
problems in terms of separability and multi-modality. The
depth of evolution in subcomponent optimisation was analysed
for both fully separable and non-separable problems as well
as those that were uni-modal and multi-modal nature. This
analysis can be very helpful in developing heuristic algorithms
that adapt the intensity or depth of evolution for different
subcomponents during different stages of the evolutionary
process.

There is a significant performance issue for different prob-
lem decompositions strategies during the beginning and end of
evolution which implies that the nature of the problem changes
in terms of separability. We need to evaluate further if this has
any relationship in terms of multi-modality which needs to be
defined, assessed and evaluated during the course of evolution.

In future work, the measure of diversity in the respective
sub-population at different depth of evolution is also impor-
tant. We can define diversity that is specific to cooperative
coevolution and then observe the behavior at different stages
of evolution.
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