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Earth system science Frontiers - an ECS perspective 45 

Revision 1 46 

 47 

Capsule 48 

We, the Young Earth System Scientist community, describe our long-term vision for the 49 

frontiers of Earth system science on the way to a holistic understanding of the Earth system. 50 

 51 

Abstract 52 

The exigencies of the global community towards Earth system science will increase in the 53 

future as population, economies and the human footprint on the planet continue to grow. 54 

This growth, combined with intensifying urbanisation, will inevitably exert increasing 55 

pressure on all ecosystem services. A unified interdisciplinary approach to Earth system 56 

science is required that can address this challenge, integrates technical demands and long-57 

term visions, and reconciles user demands with scientific feasibility. Together with the 58 

research arms of the World Meteorological Organisation, the Young Earth System Scientists 59 

community has gathered early-career scientists from around the world to initiate a discussion 60 

about frontiers of Earth system science. To provide optimal information for society, Earth 61 

system science has to provide a comprehensive understanding of the physical processes that 62 

drive the Earth system as well as anthropogenic influences. This understanding will be 63 

reflected in seamless prediction systems for environmental processes that are robust and 64 

instructive to local users on all scales. Such prediction systems require improved physical 65 

process understanding, more high-resolution global observations, advanced modelling 66 
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capability, as well as high performance computing on unprecedented scales. At the same 67 

time, the robustness and usability of such prediction systems also depend on deepening our 68 

understanding of the entire Earth system as well as improved communication between end-69 

users and researchers. Earth system science is the fundamental baseline for understanding 70 

the Earth’s capacity to accommodate humanity, and provides a means to have a rational 71 

discussion about the consequences and limits of anthropogenic influence on the planet we 72 

live on. Without its progress, truly sustainable development will be impossible.   73 
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 74 

Introduction 75 

The future of Earth system science is bright and exciting, with exponentially increasing 76 

computational power available to Earth system research (e.g., O’Neill and Steenman-Clark 77 

2002; Ramamurthy 2006; Nativi et al. 2015; Pianosi 2014) and ever more well-educated 78 

Earth system scientists around the world1. This technical and social capability comes at a 79 

time when society is increasingly realizing that global change is one of the greatest 80 

challenges it faces, both now and for future generations. To adapt to this changing world, we 81 

must deepen our understanding of natural systems as well as how we are impacting them. 82 

Current grand scientific questions in Earth system science revolve around identified 83 

knowledge gaps that are mapped onto well-coordinated research programmes within 84 

existing World Meteorological Organization (WMO) research programmes (Brasseur and 85 

Carlson 2015). They are also reflected in the ambitious targets of the integrative Future 86 

Earth network (as outlined in their 2025 vision, Future Earth 2014). To make good policy 87 

decisions, there must be a continuous conversation between scientists and stakeholders 88 

(Mitchell et al. 2006; Jones et al. 2008; Kamelarczyk and Gamborg 2014). This insight is well 89 

illustrated by the interconnectedness of the Intergovernmental Panel on Climate Change 90 

(IPCC) and the United Nations Framework Convention on Climate Change (UNFCCC), as well 91 

as the ongoing evaluation thereof (IPCC 2014). To what extent fundamental research can be 92 

balanced with user-driven agendas is a key issue for questions regarding the long-term 93 

                                                           

1  The difficulty of – mostly Western – scientific systems to provide an increasing number of PhD 
students with long-term perspectives in academia is one problematic aspect of that increase as well. This 
problem is discussed elsewhere (e.g., Larson, et al 2014) and it does not contradict our diagnosis: that there are 
more well-educated Earth system scientists around the world right now than ever before. The challenge for 
Earth system science is to use this potential to its fullest. 
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financial sustainability of Earth system science as a whole. A global, unified long-term vision 94 

is required to adequately guide the long-term development of Earth system research and the 95 

shift from a “G7”-centered research world to a more distributed, equal use and creation of 96 

scientific information. An increased focus on capacity building should become an inherent 97 

part of this journey.  98 

We, the Young Earth System Scientists community (YESS), are a global, integrated, bottom-99 

up-established network of early-career researchers. We have worked with support of the 100 

World Climate Research Program (WCRP), the World Weather Research Program (WWRP) 101 

and the Global Atmosphere Watch Program (GAW) to create this White Paper on Earth 102 

system science frontiers, based on results from a WMO-funded workshop in October 2015 in 103 

Offenbach, Germany. It presents our vision and serves to guide the discussion around the 104 

future of Earth system science.  We chose the concept of frontiers as a guiding theme for the 105 

workshop and this essay explicitly to indicate that we do not expect the topics we mention 106 

below to be “solved” in the next years; instead we envision them to be a guideline for the 107 

scientific community in the decades to come. Some of the frontiers already have known 108 

challenges, but for others the frontier represents only a general direction in which we 109 

believe Earth system science should move. We identify both frontiers in our understanding 110 

of the Earth system itself as well as frontiers in the way we handle and define Earth system 111 

science. Despite them being conceptually different, we believe that true progress in Earth 112 

system science will only be possible if we push all frontiers simultaneously. 113 

We believe that a vision of Earth system science must start from continuity, i.e., sustaining 114 

the long-term development of infrastructure that is required by the global research 115 
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community to answer the questions that society will be raising in the future. At the same 116 

time, the overall long-term goal of the Earth system science research community should be 117 

to provide globally-available, seamless, robust, and instructive environmental prediction on 118 

all time scales, as well as an improved ability of societies to make use of this information. 119 

What we exactly mean by some of these terms will be outlined throughout this essay. To 120 

reach this long-term goal, our science has to push multiple frontiers which can be visualised 121 

in three dimensions: scales (both temporal and spatial), disciplines, and users (see Figure 1). 122 

Earth system science has to push all frontiers at the same time while acknowledging that the 123 

interpretation of questions and corresponding research priorities shift between different 124 

scales, disciplines and users. This is where we have perceive the need to deviate from the 125 

status quo and break with continuity: to approach and cross these frontiers we have to ask 126 

questions that exceed boundaries of scale, discipline, and user communities; making 127 

synergetic use of the interdisciplinary intellectual wealth available in the global Earth system 128 

science community instead of following disciplinary-based funding and organisation 129 

structures. How we think this goal can be achieved is the core of this essay, including our 130 

view on how to improve equal global capacity development in the Earth system sciences. 131 

The scale frontier: seamless environmental prediction  132 

Potentially the clearest scientific frontier of our research community is going beyond what is 133 

currently available in modelling technology to develop a comprehensive understanding of 134 

the most relevant Earth system processes and their interactions at all scales; scales currently 135 

thought to be predictable, as well as those that may only become predictable in coming 136 

decades. The goal is to integrate all facets of Earth system understanding and modelling to 137 
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create seamless environmental prediction frameworks that provide information from 138 

minutes to centuries  and from meter to global spatial scales (e.g., Brasseur and Carlson 139 

2015; WMO 2015).  These frameworks will most certainly still include different models or 140 

model configurations, but will give a consistent description of processes on all scales that are 141 

missing from today’s array of models. 142 

Multiple components and features, including bio-geo-chemical cycles, chemistry, and multi-143 

directional coupling, are important at certain scales and need to be further integrated into 144 

Earth system models and data assimilation systems. Modelling systems with flexible and 145 

interchangeable model components and grids are required to tackle and predict regional 146 

and local scales in a global context. The development of an interchangeable modelling 147 

environment would require collaborative guidance and build on existing infrastructure such 148 

as the Earth System Modelling Framework and WCRP’s Coupled Model Intercomparison 149 

Project (CMIP). Sustainable development of models, big data concepts and evaluation 150 

approaches via online model diagnostics will need to be developed and improved in a future 151 

of high-resolution simulations. The range of aspects that seamless environmental prediction 152 

systems will need to address extends from near real-time warnings for extreme events (e.g., 153 

regional pollution effects, tropical cyclones, floods, etc.) to long-term effects such as ocean 154 

acidification and consequent impacts on fisheries. The user-groups of these seamless 155 

environmental prediction systems will be similarly diverse: from farmers who require short-156 

term thunderstorm forecasts, to policy makers who may have to weigh the risk of global sea 157 

level rise against the cost of global energy system change and possible corresponding 158 

disruptions of historical growth processes, either for their country or on a global scale. The 159 

design of seamless environmental prediction systems must therefore be co-produced, 160 
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including the capabilities and requirements of end users from the beginning. To develop 161 

seamless environmental prediction systems effectively and take advantage of the growth in 162 

computational capacity, a strong, sustained focus on basic model development is required. 163 

Seamless environmental prediction frameworks will also require ever more observations, 164 

and as model resolution increases to focus on the representation of smaller-scale processes, 165 

so will the limits of observational capabilities be pushed to ever finer scales. The global 166 

observing network must be made sustainable and – where justifiable – extended. This is 167 

especially true for satellite observations, where funding decisions today determine the 168 

observation capabilities 20 years from now. Observations must be made available to the 169 

entire global scientific community, which requires unified data formats and descriptions, as 170 

well as harmonized quality control and documentation. While the available observations also 171 

need to be more efficiently incorporated into data assimilation schemes, innovative 172 

methodologies have to be developed to use new observations, ranging from the global (e.g., 173 

satellite) to local scale (e.g., smartphones, cars, planes, drones, citizen-science projects). The 174 

integration of such extensive data sets will require exceptional technical expertise and 175 

presents a challenge to the capacity of today’s Earth system science community. Responding 176 

to these needs will require Earth system scientists to be comfortable working with flexible 177 

and innovative modelling systems, combined with increased usage of supercomputers, 178 

familiarity with methods from machine learning and big data, and a highly accurate global 179 

observing network. 180 

Many of these issues and novel demands require technical work that starts today, and a few 181 

of them particularly stand out to us as early-career scientists. We acknowledge the many 182 



9 

 

scientists within various research programmes already working on these issues; we 183 

acknowledge their struggle by voicing this support. To enable the technical and intellectual 184 

revolution leading to global, robust, seamless environmental prediction, we need to have 185 

the best models and observational data available to as many researchers around the globe 186 

as possible. This means, when coordinating international research programs, the 187 

participating institutions should keep the following points in mind and work to convince 188 

governing bodies of their necessity: 189 

● Continued emphasis on open access that extends to all aspects of scientific work, 190 

including the recent progress of open access publications. 191 

● A strong focus on documentation of the construction and tuning processes of Earth 192 

system models from all modelling centres (as proposed, for example by Hourdin, 193 

2016). Models should be made open source, where possible, and a well-coordinated, 194 

potentially modular model development structure is recommended to allow 195 

communities from around the world to work on improving key components of Earth 196 

system models. 197 

● Data sets and observations should always be made accessible to the global 198 

community. This requires a massive rethinking and considerable effort in terms of 199 

data harmonisation and documentation. Higher resolution observations and model 200 

data will create archiving and sharing challenges, as well as raising the question of 201 

appropriate processing to ensure the required availability of results (Overpeck et al. 202 

2011). As part of the ever-evolving big data challenge, the current system of “run, 203 

then analyse” will have to be changed in many cases to a research system, where the 204 
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key outputs have to be determined before the model simulation, similar to the 205 

design of observation systems. 206 

The user frontier: going beyond the ivory tower  207 

To work on the aforementioned fundamental research, sustained and – where possible – 208 

increased funding for Earth system science will be required. One aspect of fundamental 209 

research is the question: who pays for it? And why? The struggle for a sustainable balance 210 

between short-term, user-driven agendas and long-term, problem-based research is an 211 

inherent challenge to all fundamental research, and one that will likely remain a crucial point 212 

of contention in Earth system science in the coming years. Should the end-user - i.e., the 213 

public or its representatives - decide how Earth system science funding is distributed? This 214 

approach enhances justification for overall science expenses and automatically directs 215 

science towards user needs. But, at the same time, creates the risk of focusing only on short-216 

term problems, ignoring long-term risks, and missing relevant perspectives. The other 217 

extreme would be if the scientific community autonomously decides how to distribute its 218 

own funding. This approach could be seen as beneficial since scientists might know better 219 

where to put research priorities, but carries the danger of distancing science from the public. 220 

A well-constructed balance would have scientists consistently reporting and defending their 221 

fundamental science to the public in a format that aligns users and scientific communities 222 

iteratively. Any well-constructed balance must naturally be region-specific as well as topic-223 

dependent. Strategies to find those balances will remain highly relevant in the coming years, 224 

as the public perceives problems to be solved and the risk of decreasing Earth system 225 

science funding remains.  226 
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Some key research issues in Earth system science, such as long-term observational 227 

consistency or persistent modelling problems, suffer from the short-term “attention span” of 228 

public funding. The balance between societal pressures to focus on urgent regional problems 229 

(i.e., droughts) and the necessity to focus on long-term global issues (i.e., shift of monsoon) 230 

so that we are ready for future urgent regional problems must be created carefully. 231 

Transparent communication of why we do the science we do is a crucial aspect. We believe 232 

that Earth system science – as a relatively new field – should try to adapt to best-practices in 233 

this field from other fields that have lived in a similar balance of societal needs and 234 

fundamental research priorities, specifically long-term medical research. The current 235 

practice of large-scale, short-term funding certainly also contributes to our ability – or lack 236 

thereof – to deal with unexpected, long-term and large-scale dangers that are not on today’s 237 

research agenda. User-driven, locally anchored research priorities must be used to overcome 238 

one of the sources of this problem, also mentioned by Brasseur and Carlson (2015), namely 239 

that some implications of Earth system research clash with societal trends such as 240 

consumerism and permanent economic growth. To increase long-term public funding 241 

effectively and to warrant sustained funding, the Earth system science community has to 242 

persistently communicate its research priorities in a clear way to the public. 243 

A second key aspect of fundamental research similar to the question of fundamental or user-244 

driven research is: who uses the results? Specifically for Earth system science, this means 245 

how best to comprehensibly communicate our knowledge of the Earth system, as well as 246 

limitations of this knowledge, to society. A proper communication of scientific outcomes is a 247 

prerequisite for establishing a rational discourse with society about the implications of our 248 

knowledge and emerging priorities for future research.  Furthermore, it has to be assured 249 
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that user needs are communicated regularly and explicitly enough to the scientific 250 

community in order to guide our research priorities adequately.  Cultural and socio-251 

economic factors, as well as contexts of both communicators and users (e.g. level of 252 

knowledge, skills, incomes, ability for adaptation) influence the communication and 253 

understanding of science and its application. Hence, the challenge lies in communicating 254 

scientific results in an understandable language to policy makers and end users globally (e.g., 255 

Brewer & Stern, 2005) so as to trigger mechanisms to protect against, and adapt to disasters 256 

or other, longer-term environmental changes. One aspect of this communication problem is 257 

the insufficient training of many scientists to communicate outside of their discipline, with 258 

either scientists from other disciplines or the public. As scientists, we have an obligation to 259 

create efficient communication channels that a) allow users to engage with scientists to 260 

improve communication from the science side, and b) train users how to manage scientific 261 

information for their needs.  262 

Another challenge in disseminating our knowledge of the Earth system is different 263 

perceptions of uncertainty. The research community is well aware of the uncertainty related 264 

to scientific results and has established numerous ways of assessing and quantifying this 265 

uncertainty. In all aspects of Earth system prediction systems, uncertainty is inherent and 266 

can be multiplied from one step in the prediction chain to another (Webster et al. 2002; 267 

Stainforth et al. 2005; Maslin and Austin 2012). This uncertainty stems, e.g. from an 268 

inevitably incomplete observation of the Earth system, approximations and assumptions 269 

that are part of forecast models, and an uncertain contribution of external forcings such as 270 

anthropogenic emissions. To be able to produce robust and instructive predictions, these 271 

uncertainties need not only to be understood on each level but also to be taken into account 272 
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throughout the prediction framework in an appropriate manner. When relevant for decision 273 

processes, uncertainties need to be communicated to users in an understandable manner, 274 

adapted to their needs. Failure to communicate both certain facts and their associated 275 

uncertainty effectively limits the transfer of knowledge. But, even if done correctly, 276 

uncertainties often oppose society's request for concrete and certain statements, and may 277 

hence be seen as a “deficiency in research” (Sense About Science 2013). This issue is further 278 

complicated by the fact that even different communities in Earth system science utilize 279 

different vocabularies (e.g., Rauser et al. 2014). Continuous work is required to homogenise 280 

language among disciplines, while at the same time further communication channels with 281 

end-users should be explored and established. We acknowledge that the goal of a “best 282 

practice” will most likely not be a fixed optimum solution but change in time. However, 283 

sustained focus on this issue will hopefully lead to more robust communication and better 284 

understanding of the largest difficulties on the way to effective communication. Knowledge 285 

and understanding of uncertainty inherent to particular scientific results goes hand in hand 286 

with the general level of understanding – a better understanding of Earth system 287 

uncertainties will also help society grasp why predictions might diverge (e.g. differing 288 

forecasts for next week’s temperatures).   289 

To sustainably address the challenges of fundamental research funding and effective 290 

communication represents a substantial frontier to work towards: only if science manages to 291 

fulfil this effectively – and better than today – all that follows will make sense. In a politicised 292 

and highly relevant science like Earth system science, which combines fundamental with 293 

applied research, the scientific community cannot stay disconnected from the public but also 294 

cannot yield completely to the public’s demands. This balance can only be found through 295 
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iterative interaction with society. To enable sustainable use of its results, Earth system 296 

science has to cross the user frontier and leave the ivory tower for good. 297 

The human frontier: a new, interdisciplinary Earth system science in the Anthropocene  298 

Earth system science aims to observe and to enhance the understanding of the Earth System 299 

processes and their interactions. Over the last decades, the human component and its 300 

interactions with the natural Earth system have gained prominence (IPCC 2014). Human 301 

activities are now so prevalent and dominant that they rival the large forces of nature 302 

(Crutzen 2006; Steffen et al. 2007), and scientists have therefore suggested that a new 303 

epoch “the Anthropocene” has begun2. A definition of the Earth system and its 304 

interconnections is incomplete without addressing this large and influential human 305 

component, requiring that we overcome the disciplinary boundaries between natural 306 

sciences, social sciences, and the humanities (Boucher et al. 2016). To facilitate this change, 307 

we need a consistent focus on inter- and trans-disciplinary Earth system science by a 308 

multidisciplinary scientific community. Only by doing this will we be able to fully understand 309 

the governance of Earth’s limited resources and humanity’s physical footprint on the planet, 310 

including planned and unplanned attempts to control the Earth system (van der Hel 2016). 311 

We recommend a larger focus of educational and institutional resources on questions 312 

integrating natural and social sciences within the broad field of Earth system science. 313 

We acknowledge the challenges of trans-disciplinary co-operation and co-production of 314 

science and we look forward to a future where the boundaries between sciences become 315 

                                                           

2  The British-led Working Group on the Anthropocene (WGA) reported at the 35TH INTERNATIONAL 
GEOLOGICAL CONGRESS in Cape Town in August 2016 that, in its considered opinion, the Anthropocene epoch 
began in 1950. A final decision was still to be made at the time this manuscript went into print. 
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increasingly fluid. At the same time, we acknowledge that for specific scientific questions, 316 

e.g., atmospheric composition, geological sediment processes or deep ocean circulation 317 

patterns, there probably is no permanent need to consult, e.g., a political analyst, while for 318 

other questions there might be. One way forward would be to formulate and address 319 

scientific questions starting from a real-world perspective, instead of a disciplinary scientific 320 

question. The main challenges in co-production and trans-disciplinary science in the 321 

Anthropocene are to find valuable entry points among disciplines, to develop just the right 322 

level of interdisciplinary interaction, and to identify the roles of co-producers and 323 

stakeholders (Boucher 2016; van der Hel 2016). The only truly promising way of organizing, 324 

guiding, and integrating Earth system science in the Anthropocene is to find an 325 

organisational framework that allows us to explore these questions and to find a common 326 

way forward involving trans-disciplinary interactions. One relevant aspect of the human 327 

frontier is therefore to overcome historical disciplinary limitations and develop our science 328 

to be naturally inclusive of social and political processes and effects, going far beyond 329 

already ongoing efforts to reconcile communication difficulties between different disciplines 330 

as mentioned in the paragraphs above. 331 

Another aspect of the human frontier is the way we treat human interactions with the Earth 332 

system. In the coming decades, even more attention should be given to how we manage 333 

Earth's natural resources and how to take into account the importance of sustainability as 334 

populations continue to grow in a changing climate. Questions about, e.g., water availability 335 

and food security, as well as waste management, might impose the greatest direct risks for 336 
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more vulnerable, developing countries 3, but they need to be answered as part of a global 337 

quest to create a new, global governance regime for the Anthropocene (e.g., Messner and 338 

Nuscheler 1996; United Nations 2015). As an example, global decarbonisation implies a huge 339 

societal transformation in all sectors: energy, transport, industrial, and housing. Such a 340 

decarbonisation strategy will require massive sustainable development in all countries to 341 

cope with growing demand for materials, energy, and water (Wiedmann et al. 2015). For 342 

Earth system science, it is a major future task to investigate the effective management of 343 

natural resources and environmental risks on time scales of decades to centuries. Our 344 

community must increase efforts to address the global problems of pollution, food, and 345 

water availability, and the transfer of best practices across regional boundaries. 346 

The 20th century can be seen as the single largest experiment in exerting unregulated and 347 

reckless climate engineering, i.e., attempts to control the Earth system. Humanity has been 348 

changing global atmospheric composition through anthropogenic greenhouse gas emissions 349 

and will continue to do so for some time, despite recent agreements to globally reduce them 350 

(Paris Agreement 2015). Additionally, humanity has massively influenced land-use on a 351 

global scale, mostly lacking any sort of coordination. The slow-moving process of humanity 352 

to massively influence our environment in the past requires more research about the 353 

motives and social-drivers behind these actions and decisions - leading to a clearer 354 

understanding of what Anthropocene really means. The study of how humans influence 355 

Earth system processes has a long history, but has gained additional visibility in recent years, 356 

particularly when confronted with the question of legal responsibility for changes in the 357 

                                                           

3  We refer here to an undefined group of countries, sometimes referred to as “Global South”. Some of 
these countries are represented at climate conferences by the LDCs, LLDCs and SIDs coalitions (Least 
Developed Countries, Landlocked Developing Countries, Small Island Developing countries).  
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Earth system (Sanderson et al. 2002). Providing a scientific base for these types of societal 358 

discussions is an enormous challenge and simultaneously a huge motivation. We believe that 359 

the opportunities and limits of anthropogenic control of the Earth system must be tackled 360 

with large, interdisciplinary, and global approaches. This represents the largest aspect of the 361 

human frontier: we have to think of the Earth system as an inclusive system including social 362 

systems; anthropogenic influences no longer provide external input to the Earth system, but 363 

are a fundamental part of this system. There is still a long way to go to fully develop 364 

technical, legal, social, and economic models or concepts for this type of Earth system 365 

science and it will only be truly possible if the other frontiers and dimensions of Earth system 366 

science are tackled at the same time. 367 

Going forward: global knowledge transfer and skill development 368 

As early-career scientists we will play a critical role in shaping Earth system science in the 369 

coming decades, recognizing that the role of scientists in society may change in future. The 370 

fast pace of change, which is brought about by scientific and technical progress and new 371 

understanding in Earth system science, necessitates new ways and means for knowledge 372 

transfer and skill development. It is imperative that the scientific community continue to 373 

push knowledge transfer to complement ongoing efforts and to nurture a new generation of 374 

scientists for the tasks that lie ahead. Transfer of knowledge and skill development is needed 375 

not only from one generation to the next, but also across disciplines and across regions to 376 

advance the field of Earth system science as a whole. 377 

To better address the communication challenge, we need to encourage interdisciplinary 378 

science and develop a common language to facilitate a good understanding and application 379 
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of science. A well-integrated community of interdisciplinary Earth system scientists will 380 

provide multiple perspectives when considering a particular societal problem. It is vital to 381 

build this common language within the interdisciplinary field of Earth system science, e.g., by 382 

defining terms, clarifying concepts, and explaining uncertainties. Interdisciplinary education 383 

of early-career researchers is one way to improve this situation. This has been addressed by 384 

interdisciplinary graduate schools around the world, but has yet to be transferred into an 385 

interdisciplinary reality of global Earth system science. A global network for early-career 386 

researchers in Earth system science provides the opportunity to cross boundaries between 387 

disciplines and to establish cooperation among scientists worldwide. It can thus support the 388 

development of a new generation of interdisciplinary scientists, preparing them for the 389 

challenges that lie ahead while facilitating effective skill development and knowledge 390 

transfer.   391 

To further integrate this global community, a long-term funding framework supporting 392 

scientific exchange between early-career Earth system researchers and their integration into 393 

global research initiatives should be developed. This framework should complement and 394 

unify existing approaches around the world. The funding framework should be deliberate in 395 

its efforts to support early-career researchers in regions where Earth system science 396 

research remains less well-represented, thus enhancing local research capacity. An 397 

additional focus of our early-career community will be to complement support for scientific 398 

exchange through continuous experimentation with carbon-friendly virtual meetings; Earth 399 

system science should take the lead in the decarbonizing it suggests as necessary. 400 
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We envisage the establishment of a truly global and interdisciplinary Young Earth System 401 

Scientists community to organize and enhance interactions among early-career researchers 402 

around the world (Rauser et al. 2015). This community will connect with existing networking 403 

efforts not only from within WCRP, WWRP, and GAW, but also with other global Earth 404 

system science-related research initiatives, such as Future Earth. We believe a sustainable 405 

organisational structure will allow the next generation of Earth system science leaders to 406 

work in an integrative and collaborative way to effectively tackle the challenges of Earth 407 

system science without the disciplinary boundaries of the past – and to push our science 408 

beyond the frontiers outlined in this essay on the way. We believe that increased awareness 409 

of funding agencies around the world is required to support an early-career researcher 410 

network in Earth system science (see Figure 2 A sketch of the structure of the Young Earth System Scientists 411 

Community). The network we suggest specifically has been developed from the bottom-up, is 412 

interdisciplinary in nature, and aims to become well-connected with stakeholders and 413 

decision makers around the world. We want to start creating the unified globally-integrated 414 

science community of the future – right now.  415 

Conclusion 416 

The goals outlined above are a vision. They may be idealistic, but we believe them to be 417 

complementary to existing research programmes, and particularly, help to initiate a 418 

discussion of what Earth system science wants to achieve in the long term. While the 419 

process of identifying knowledge gaps has been extremely helpful in focussing scientific 420 

ideas and questions (e.g., Bony et al. 2015), a discussion of the overall vision of what Earth 421 

system science can - and will - offer to humanity is needed to meet societal demands and to 422 
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overcome funding issues. As mentioned above, the funding situation will only be improved if 423 

communities around the world recognize the need for increased awareness and 424 

understanding of the Earth system as a whole, as well as the capacity to be able to predict 425 

relevant aspects of this system. The envisioned targets are long-term in nature and can only 426 

be fully achieved if we successfully assemble the global Earth system science community and 427 

coordinate research plans and activities across academia, government, industry, and society. 428 

Unification at the early-career level will not only be beneficial to existing global research 429 

coordination programmes, but also lay the necessary foundation for future Earth system 430 

science and the challenges that need to be addressed by our research community. 431 

The goals of our early-career network are to strengthen interdisciplinarity and improve 432 

exchange between all regions of the globe, right from the beginning of researchers’ career. 433 

Most importantly, we must work hard to communicate to the world that the Earth system 434 

science community has accepted the challenge of creating tangible products for the benefit 435 

of society. A coordinated, interdisciplinary, and truly global approach to Earth system 436 

science is the best means to foster understanding of the complex interplay of Earth's 437 

processes and to develop applicable tools to confront the challenges facing society both now 438 

and in the future. 439 
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Figure Captions 558 

Figure 1:  The solution space of an integrated science community that must bring together 559 

disciplines, knowledge about different scales and use cases. True progress for Earth system 560 

science can only be accomplished by pushing all frontiers at the same time. 561 

Figure 2: The structure of the Young Earth System Scientists Community 562 
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