USP Electronic Research Repository

A tri - gram based feature extraction technique using linear probabilities of position specific scoring matrix for protein fold recognition

Paliwal, K.K. and Sharma, Alokanand and Lyons, J. and Dehzangi, A. (2014) A tri - gram based feature extraction technique using linear probabilities of position specific scoring matrix for protein fold recognition. IEEE Transactions on Nanobioscience, 13 (1). pp. 44-50. ISSN 1536-1241

[thumbnail of A_tri_-_gram_based_feature_extraction_technique_using_linear_probabilities_of_position_specific_scoring_matrix_for_protein_fold_recognition.pdf]
Preview
PDF - Accepted Version
Download (916kB) | Preview

Abstract

In biological sciences, the deciphering of a three dimensional structure of a protein sequence is considered to be an important and challenging task. The identification of protein folds from primary protein sequences is an intermediate step in discovering the three dimensional structure of a protein. This can be done by utilizing feature extraction technique to accurately extract all the relevant information followed by employing a suitable classifier to label an unknown protein. In the past, several feature extraction techniques have been developed but with limited recognition accuracy only. In this study, we have developed a feature extraction technique based on tri-grams computed directly from Position Specific Scoring Matrices. The effectiveness of the feature extraction technique has been shown on two benchmark datasets. The proposed technique exhibits up to 4.4% improvement in protein fold recognition accuracy compared to the state-of-the-art feature extraction techniques.

Item Type: Journal Article
Subjects: T Technology > T Technology (General)
Divisions: Faculty of Science, Technology and Environment (FSTE) > School of Engineering and Physics
Depositing User: Alokanand Sharma
Date Deposited: 11 May 2014 23:36
Last Modified: 12 May 2016 22:04
URI: https://repository.usp.ac.fj/id/eprint/7334

Actions (login required)

View Item View Item