USP Electronic Research Repository

Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction

Chandra, Rohitash and Zhang, M. (2012) Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction. Neurocomputing, 86 . pp. 116-123. ISSN 0925-2312

[thumbnail of ccrnntime.pdf]
Preview
PDF - Submitted Version
Download (177kB) | Preview

Abstract

Cooperative coevolution decomposes a problem into subcomponents and employs evolutionary algorithms for solving them. Cooperative coevolution has been effective for evolving neural networks. Different problem decomposition methods in cooperative coevolution determine how a neural network is decomposed and encoded which affects its performance. A good problem decomposition method should provide enough diversity and also group interacting variables which are the synapses in the neural network. Neural networks have shown promising results in chaotic time series prediction. This work employs two problem decomposition methods for training Elman recurrent neural networks on chaotic time series problems. The Mackey-Glass, Lorenz and Sunspot time series are used to demonstrate the performance of the cooperative neuro-evolutionary methods. The results show improvement in performance in terms of accuracy when compared to some of the methods from literature.

Item Type: Journal Article
Subjects: Q Science > QA Mathematics > QA76 Computer software
Divisions: Faculty of Science, Technology and Environment (FSTE) > School of Computing, Information and Mathematical Sciences
Depositing User: Rohitash Chandra
Date Deposited: 29 Jul 2014 00:35
Last Modified: 20 Jul 2016 01:25
URI: https://repository.usp.ac.fj/id/eprint/7551

Actions (login required)

View Item View Item